organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Naphthyl quinoxalin-2-yl ether

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 March 2009; accepted 4 March 2009; online 11 March 2009)

In the crystal structure of the title compound, C18H12N2O, the dihedral angle between the two fused-ring systems is 84.3 (1) °; the C—O—C angle at the ether O atom is 117.31 (18)°.

Related literature

For the crystal structure of the two forms of quinoxalinyl 2-phenyl ether, see: Abdullah & Ng (2008[Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2165.]); Hassan et al. (2008[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2O

  • Mr = 272.30

  • Orthorhombic, A b a 2

  • a = 18.2758 (6) Å

  • b = 18.5123 (6) Å

  • c = 7.7947 (3) Å

  • V = 2637.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 118 K

  • 0.12 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 12370 measured reflections

  • 1626 independent reflections

  • 1316 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.02

  • 1626 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of the two forms of quinoxalinyl 2-phenyl ether, see: Abdullah & Ng (2008); Hassan et al. (2008).

Experimental top

1-Naphthol (2.88 g, 20 mmol) was mixed with sodium hydroxide (0.08 g, 20 mmol) in several drops of water. The water was then evaporated. The paste was heated with 2-chloroquinoxaline (3.29 g, 20 mmol) at 423–433 K for 6 h. The product was dissolved in water and the solution extracted with chloroform. The chloroform phase was dried over sodium sulfate; the evaporation of the solvent gave a product that was recrystallized from a chloroform/ether mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of C18H12N2O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
1-Naphthyl quinoxalin-2-yl ether top
Crystal data top
C18H12N2OF(000) = 1136
Mr = 272.30Dx = 1.372 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 1495 reflections
a = 18.2758 (6) Åθ = 2.2–21.2°
b = 18.5123 (6) ŵ = 0.09 mm1
c = 7.7947 (3) ÅT = 118 K
V = 2637.2 (2) Å3Prism, colorless
Z = 80.12 × 0.04 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
1316 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 2223
12370 measured reflectionsk = 2423
1626 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2 + 0.5804P]
where P = (Fo2 + 2Fc2)/3
1626 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C18H12N2OV = 2637.2 (2) Å3
Mr = 272.30Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 18.2758 (6) ŵ = 0.09 mm1
b = 18.5123 (6) ÅT = 118 K
c = 7.7947 (3) Å0.12 × 0.04 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
1316 reflections with I > 2σ(I)
12370 measured reflectionsRint = 0.071
1626 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.087H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
1626 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19391 (9)0.24366 (9)0.5000 (2)0.0217 (4)
N10.15328 (11)0.34927 (11)0.3713 (3)0.0192 (5)
N20.30285 (11)0.38838 (11)0.3387 (3)0.0218 (5)
C10.12235 (13)0.21546 (12)0.4887 (4)0.0192 (5)
C20.07744 (14)0.22066 (13)0.6269 (4)0.0222 (6)
H20.09300.24540.72730.027*
C30.00734 (14)0.18873 (13)0.6196 (3)0.0234 (6)
H30.02460.19220.71550.028*
C40.01480 (14)0.15306 (13)0.4762 (3)0.0231 (6)
H40.06190.13140.47370.028*
C50.03121 (13)0.14761 (12)0.3301 (3)0.0198 (5)
C60.00887 (15)0.11230 (14)0.1784 (4)0.0269 (6)
H60.03810.09030.17370.032*
C70.05358 (16)0.10925 (15)0.0388 (4)0.0301 (7)
H70.03750.08570.06270.036*
C80.12373 (16)0.14110 (15)0.0448 (4)0.0278 (6)
H80.15460.13880.05310.033*
C90.14764 (14)0.17502 (13)0.1890 (4)0.0219 (6)
H90.19520.19570.19170.026*
C100.10190 (13)0.17973 (13)0.3355 (3)0.0180 (5)
C110.20655 (14)0.30943 (13)0.4253 (3)0.0189 (5)
C120.28187 (14)0.32836 (13)0.4113 (3)0.0213 (6)
H120.31780.29640.45600.026*
C130.24804 (15)0.43279 (12)0.2773 (3)0.0190 (5)
C140.26686 (14)0.49812 (13)0.1965 (4)0.0232 (6)
H140.31680.51140.18410.028*
C150.21262 (15)0.54275 (14)0.1356 (4)0.0247 (6)
H150.22530.58660.07980.030*
C160.13869 (15)0.52397 (13)0.1552 (4)0.0231 (6)
H160.10170.55520.11230.028*
C170.11934 (14)0.46108 (13)0.2357 (3)0.0212 (6)
H170.06910.44940.25010.025*
C180.17350 (13)0.41378 (13)0.2971 (3)0.0190 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (9)0.0192 (9)0.0275 (10)0.0015 (7)0.0032 (8)0.0043 (8)
N10.0177 (11)0.0189 (10)0.0211 (12)0.0005 (8)0.0005 (8)0.0002 (9)
N20.0202 (11)0.0228 (11)0.0223 (11)0.0011 (8)0.0006 (10)0.0001 (10)
C10.0154 (13)0.0156 (11)0.0266 (14)0.0005 (9)0.0035 (12)0.0063 (11)
C20.0246 (14)0.0183 (12)0.0237 (14)0.0038 (10)0.0013 (12)0.0002 (11)
C30.0228 (14)0.0215 (13)0.0259 (15)0.0046 (10)0.0077 (12)0.0030 (12)
C40.0164 (13)0.0212 (12)0.0316 (16)0.0026 (9)0.0011 (12)0.0054 (12)
C50.0179 (13)0.0159 (12)0.0255 (14)0.0015 (10)0.0038 (11)0.0057 (11)
C60.0244 (14)0.0236 (13)0.0326 (16)0.0003 (11)0.0065 (13)0.0009 (13)
C70.0321 (16)0.0316 (15)0.0266 (16)0.0045 (12)0.0094 (13)0.0040 (13)
C80.0325 (15)0.0312 (15)0.0198 (14)0.0087 (12)0.0021 (12)0.0017 (12)
C90.0206 (13)0.0194 (12)0.0257 (14)0.0031 (10)0.0009 (11)0.0065 (12)
C100.0184 (12)0.0152 (11)0.0205 (13)0.0019 (9)0.0007 (11)0.0045 (10)
C110.0225 (14)0.0169 (12)0.0172 (12)0.0021 (10)0.0020 (11)0.0011 (10)
C120.0193 (14)0.0229 (13)0.0217 (13)0.0016 (10)0.0012 (11)0.0018 (11)
C130.0191 (12)0.0193 (11)0.0184 (13)0.0000 (10)0.0003 (10)0.0023 (10)
C140.0226 (14)0.0226 (12)0.0243 (14)0.0037 (10)0.0031 (12)0.0002 (12)
C150.0312 (15)0.0203 (12)0.0225 (14)0.0016 (11)0.0019 (12)0.0017 (11)
C160.0243 (14)0.0199 (12)0.0252 (14)0.0032 (10)0.0034 (12)0.0006 (11)
C170.0192 (13)0.0199 (12)0.0245 (14)0.0004 (10)0.0005 (11)0.0023 (11)
C180.0205 (13)0.0160 (11)0.0204 (13)0.0010 (10)0.0000 (11)0.0043 (11)
Geometric parameters (Å, º) top
O1—C111.369 (3)C7—C81.412 (4)
O1—C11.411 (3)C7—H70.9500
N1—C111.292 (3)C8—C91.360 (4)
N1—C181.378 (3)C8—H80.9500
N2—C121.304 (3)C9—C101.418 (3)
N2—C131.382 (3)C9—H90.9500
C1—C21.358 (4)C11—C121.425 (3)
C1—C101.415 (3)C12—H120.9500
C2—C31.412 (4)C13—C141.406 (3)
C2—H20.9500C13—C181.415 (4)
C3—C41.360 (4)C14—C151.375 (4)
C3—H30.9500C14—H140.9500
C4—C51.419 (4)C15—C161.404 (4)
C4—H40.9500C15—H150.9500
C5—C61.411 (4)C16—C171.369 (4)
C5—C101.423 (3)C16—H160.9500
C6—C71.362 (4)C17—C181.405 (3)
C6—H60.9500C17—H170.9500
C11—O1—C1117.31 (18)C10—C9—H9119.8
C11—N1—C18115.4 (2)C1—C10—C9123.5 (2)
C12—N2—C13116.4 (2)C1—C10—C5117.4 (2)
C2—C1—O1119.0 (2)C9—C10—C5119.1 (2)
C2—C1—C10122.9 (2)N1—C11—O1121.3 (2)
O1—C1—C10118.1 (2)N1—C11—C12124.2 (2)
C1—C2—C3119.1 (2)O1—C11—C12114.5 (2)
C1—C2—H2120.5N2—C12—C11121.8 (2)
C3—C2—H2120.5N2—C12—H12119.1
C4—C3—C2120.4 (2)C11—C12—H12119.1
C4—C3—H3119.8N2—C13—C14119.3 (2)
C2—C3—H3119.8N2—C13—C18120.8 (2)
C3—C4—C5121.2 (2)C14—C13—C18119.9 (2)
C3—C4—H4119.4C15—C14—C13119.7 (2)
C5—C4—H4119.4C15—C14—H14120.2
C6—C5—C4122.3 (2)C13—C14—H14120.2
C6—C5—C10118.8 (2)C14—C15—C16120.5 (2)
C4—C5—C10119.0 (2)C14—C15—H15119.7
C7—C6—C5121.0 (2)C16—C15—H15119.7
C7—C6—H6119.5C17—C16—C15120.6 (2)
C5—C6—H6119.5C17—C16—H16119.7
C6—C7—C8120.0 (3)C15—C16—H16119.7
C6—C7—H7120.0C16—C17—C18120.3 (2)
C8—C7—H7120.0C16—C17—H17119.9
C9—C8—C7120.8 (3)C18—C17—H17119.9
C9—C8—H8119.6N1—C18—C17119.6 (2)
C7—C8—H8119.6N1—C18—C13121.3 (2)
C8—C9—C10120.3 (2)C17—C18—C13119.1 (2)
C8—C9—H9119.8
C11—O1—C1—C2101.4 (3)C18—N1—C11—O1179.3 (2)
C11—O1—C1—C1081.6 (3)C18—N1—C11—C120.3 (4)
O1—C1—C2—C3176.3 (2)C1—O1—C11—N110.9 (3)
C10—C1—C2—C30.5 (3)C1—O1—C11—C12168.2 (2)
C1—C2—C3—C40.2 (3)C13—N2—C12—C110.4 (4)
C2—C3—C4—C50.7 (4)N1—C11—C12—N21.0 (4)
C3—C4—C5—C6178.6 (2)O1—C11—C12—N2178.1 (2)
C3—C4—C5—C100.5 (3)C12—N2—C13—C14179.6 (2)
C4—C5—C6—C7178.6 (2)C12—N2—C13—C181.4 (4)
C10—C5—C6—C70.5 (4)N2—C13—C14—C15179.7 (2)
C5—C6—C7—C80.6 (4)C18—C13—C14—C150.7 (4)
C6—C7—C8—C90.1 (4)C13—C14—C15—C160.7 (4)
C7—C8—C9—C100.8 (4)C14—C15—C16—C170.2 (4)
C2—C1—C10—C9178.8 (2)C15—C16—C17—C181.2 (4)
O1—C1—C10—C94.4 (3)C11—N1—C18—C17179.5 (2)
C2—C1—C10—C50.7 (3)C11—N1—C18—C132.1 (3)
O1—C1—C10—C5176.1 (2)C16—C17—C18—N1177.3 (2)
C8—C9—C10—C1178.6 (2)C16—C17—C18—C131.2 (4)
C8—C9—C10—C50.9 (4)N2—C13—C18—N12.8 (4)
C6—C5—C10—C1179.3 (2)C14—C13—C18—N1178.2 (2)
C4—C5—C10—C10.2 (3)N2—C13—C18—C17178.8 (2)
C6—C5—C10—C90.2 (3)C14—C13—C18—C170.3 (4)
C4—C5—C10—C9179.3 (2)

Experimental details

Crystal data
Chemical formulaC18H12N2O
Mr272.30
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)118
a, b, c (Å)18.2758 (6), 18.5123 (6), 7.7947 (3)
V3)2637.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12370, 1626, 1316
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.02
No. of reflections1626
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya for supporting this study (FS358/2008 A).

References

First citationAbdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds