organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-n-propyl­ammonium chloride monohydrate

aCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 March 2009; accepted 16 March 2009; online 25 March 2009)

The crystal structure of the title salt hydrate, C12H28N+·Cl·H2O, consists of non-inter­acting cations and anions. The water mol­ecule forms hydrogen bonds to two chloride ions, about a center of inversion, generating a planar eight-membered {⋯H—O—H⋯Cl}2 ring.

Related literature

For the corresponding undecahydrated fluoride, see: Lipkowski et al. (1992[Lipkowski, J., Luboradzki, R., Udachin, K. & Dyadin, Y. (1992). J. Inclusion Phenom. 13, 295.], 1997[Lipkowski, J., Luboradzki, R. & Udachin, K. A. (1997). Supramol. Chem. 8, 281-286.]). For the anhydrous bromide, see: Zalkin (1957[Zalkin, A. (1957). Acta Cryst. 10, 557-560.]). For the anhydrous iodide, see: Yoshida et al. (1994[Yoshida, T., Nagata, K., Yasuniwa, M., Yoshimatsu, M. & Wunderlich, B. (1994). Acta Cryst. C50, 1758-1760.])

[Scheme 1]

Experimental

Crystal data
  • C12H28N+·Cl·H2O

  • Mr = 239.82

  • Monoclinic, P 21 /n

  • a = 8.4228 (2) Å

  • b = 17.4383 (4) Å

  • c = 10.6885 (2) Å

  • β = 97.892 (1)°

  • V = 1555.05 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.60 × 0.40 × 0.35 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.769, Tmax = 1.000 (expected range = 0.710–0.923)

  • 9762 measured reflections

  • 3562 independent reflections

  • 2719 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.150

  • S = 1.02

  • 3562 reflections

  • 144 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯Cl1 0.86 (1) 2.37 (1) 3.227 (2) 175 (2)
O1—H12⋯Cl1i 0.86 (1) 2.51 (1) 3.352 (2) 168 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the corresponding undecahydated fluoride, see: Lipkowski et al. (1992, 1997). For the anhydrous bromide, see: Zalkin (1957). For the anhydrous iodide, see: Yoshida et al. (1994)

Experimental top

The salt was one of the possible products of the reaction of tetra-n-propylammonium hydroxide, guanidnium chloride and 1,3,5-tri(4-carboxyphenyl)benzene in a water/ethanol mixture. The other products were not identified.

Refinement top

Carbon and nitrogen-bound H-atoms were placed in calculated positions (C—H 0.96–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.85±0.01 Å and H···H 1.39±0.01 Å; their Uiso values were refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the asymmetric unit of the title compound and its centrosymmetric mate; displacement ellipsoids are set at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Dashed lines denote hydrogen bonds.
Tetra-n-propylammonium chloride monohydrate top
Crystal data top
C12H28N+·Cl·H2OF(000) = 536
Mr = 239.82Dx = 1.024 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3424 reflections
a = 8.4228 (2) Åθ = 2.3–27.8°
b = 17.4383 (4) ŵ = 0.23 mm1
c = 10.6885 (2) ÅT = 295 K
β = 97.892 (1)°Block, colorless
V = 1555.05 (6) Å30.60 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3562 independent reflections
Radiation source: fine-focus sealed tube2719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.769, Tmax = 1.000k = 2215
9762 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.08P)2 + 0.2641P]
where P = (Fo2 + 2Fc2)/3
3562 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H28N+·Cl·H2OV = 1555.05 (6) Å3
Mr = 239.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4228 (2) ŵ = 0.23 mm1
b = 17.4383 (4) ÅT = 295 K
c = 10.6885 (2) Å0.60 × 0.40 × 0.35 mm
β = 97.892 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
3562 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2719 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 1.000Rint = 0.021
9762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
3562 reflectionsΔρmin = 0.26 e Å3
144 parameters
Special details top

Experimental. A somewhat large crystal was used in the measurements, but this does not seem to have had an adverse efffect on the quality of the diffraction data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49841 (5)0.65518 (2)0.49054 (4)0.06695 (19)
O10.7153 (2)0.50593 (9)0.57075 (19)0.0885 (5)
H110.661 (3)0.5471 (8)0.553 (2)0.116 (9)*
H120.655 (3)0.4680 (9)0.543 (3)0.148 (13)*
N10.00272 (15)0.67045 (7)0.32316 (12)0.0479 (3)
C10.11887 (19)0.63243 (9)0.24594 (14)0.0509 (4)
H1A0.22550.65220.27420.061*
H1B0.12050.57790.26380.061*
C20.0833 (3)0.64325 (11)0.10428 (16)0.0693 (5)
H2A0.02200.62270.07380.083*
H2B0.08310.69750.08430.083*
C30.2080 (3)0.60277 (16)0.0399 (2)0.0971 (8)
H3A0.18550.61070.04960.146*
H3B0.20580.54890.05790.146*
H3C0.31210.62300.07050.146*
C40.1683 (2)0.64589 (12)0.27918 (17)0.0646 (5)
H4A0.23670.66780.33580.077*
H4B0.20120.66730.19590.077*
C50.1959 (3)0.56022 (15)0.2729 (2)0.0900 (7)
H5A0.17340.53840.35690.108*
H5B0.12400.53680.22040.108*
C60.3680 (3)0.5438 (2)0.2183 (3)0.1355 (14)
H6A0.38510.48940.21460.203*
H6B0.38930.56490.13470.203*
H6C0.43860.56670.27080.203*
C70.0544 (2)0.64638 (9)0.45924 (14)0.0516 (4)
H7A0.03470.59180.46590.062*
H7B0.16920.65420.47870.062*
C80.0258 (2)0.68710 (12)0.55843 (16)0.0659 (5)
H8A0.14080.67910.54240.079*
H8B0.00520.74180.55560.079*
C90.0402 (3)0.65545 (14)0.68748 (19)0.0851 (7)
H9A0.01140.68040.75110.128*
H9B0.15360.66470.70360.128*
H9C0.02030.60130.68940.128*
C100.0095 (2)0.75695 (9)0.30981 (17)0.0585 (4)
H10A0.02430.77010.22200.070*
H10B0.06710.77950.35900.070*
C110.1705 (3)0.79260 (11)0.3505 (2)0.0802 (6)
H11A0.24440.77680.29330.096*
H11B0.21220.77460.43450.096*
C120.1596 (3)0.87896 (12)0.3513 (2)0.0921 (7)
H12A0.26380.90020.37820.138*
H12B0.08730.89470.40850.138*
H12C0.12070.89690.26780.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0595 (3)0.0543 (3)0.0819 (3)0.00883 (18)0.0084 (2)0.0134 (2)
O10.0763 (10)0.0649 (10)0.1177 (13)0.0160 (8)0.0101 (9)0.0075 (9)
N10.0450 (7)0.0476 (7)0.0500 (7)0.0069 (5)0.0023 (5)0.0061 (5)
C10.0534 (8)0.0449 (8)0.0543 (8)0.0083 (7)0.0067 (7)0.0053 (6)
C20.0840 (13)0.0695 (12)0.0544 (9)0.0188 (10)0.0100 (9)0.0099 (8)
C30.125 (2)0.1048 (18)0.0659 (12)0.0372 (15)0.0271 (13)0.0045 (12)
C40.0482 (9)0.0874 (13)0.0561 (9)0.0014 (8)0.0001 (7)0.0002 (8)
C50.0818 (14)0.0948 (17)0.0936 (15)0.0340 (12)0.0128 (12)0.0136 (12)
C60.099 (2)0.207 (4)0.103 (2)0.078 (2)0.0222 (16)0.055 (2)
C70.0525 (8)0.0511 (9)0.0495 (8)0.0052 (7)0.0011 (6)0.0064 (6)
C80.0613 (10)0.0782 (12)0.0572 (10)0.0087 (9)0.0040 (8)0.0026 (9)
C90.0846 (15)0.1143 (19)0.0561 (10)0.0104 (12)0.0080 (10)0.0030 (11)
C100.0639 (10)0.0469 (9)0.0645 (9)0.0174 (7)0.0082 (8)0.0082 (7)
C110.0746 (13)0.0472 (10)0.1188 (17)0.0000 (9)0.0133 (12)0.0074 (10)
C120.133 (2)0.0500 (11)0.0923 (15)0.0012 (12)0.0120 (14)0.0009 (10)
Geometric parameters (Å, º) top
O1—H110.858 (10)C6—H6A0.9600
O1—H120.859 (10)C6—H6B0.9600
N1—C41.514 (2)C6—H6C0.9600
N1—C11.517 (2)C7—C81.511 (2)
N1—C101.517 (2)C7—H7A0.9700
N1—C71.5189 (18)C7—H7B0.9700
C1—C21.514 (2)C8—C91.519 (3)
C1—H1A0.9700C8—H8A0.9700
C1—H1B0.9700C8—H8B0.9700
C2—C31.508 (3)C9—H9A0.9600
C2—H2A0.9700C9—H9B0.9600
C2—H2B0.9700C9—H9C0.9600
C3—H3A0.9600C10—C111.501 (3)
C3—H3B0.9600C10—H10A0.9700
C3—H3C0.9600C10—H10B0.9700
C4—C51.512 (3)C11—C121.509 (3)
C4—H4A0.9700C11—H11A0.9700
C4—H4B0.9700C11—H11B0.9700
C5—C61.514 (3)C12—H12A0.9600
C5—H5A0.9700C12—H12B0.9600
C5—H5B0.9700C12—H12C0.9600
H11—O1—H12107.3 (15)C5—C6—H6C109.5
C4—N1—C1111.37 (13)H6A—C6—H6C109.5
C4—N1—C10107.36 (12)H6B—C6—H6C109.5
C1—N1—C10110.37 (12)C8—C7—N1116.43 (13)
C4—N1—C7110.76 (12)C8—C7—H7A108.2
C1—N1—C7106.19 (11)N1—C7—H7A108.2
C10—N1—C7110.82 (12)C8—C7—H7B108.2
C2—C1—N1115.83 (13)N1—C7—H7B108.2
C2—C1—H1A108.3H7A—C7—H7B107.3
N1—C1—H1A108.3C7—C8—C9108.86 (16)
C2—C1—H1B108.3C7—C8—H8A109.9
N1—C1—H1B108.3C9—C8—H8A109.9
H1A—C1—H1B107.4C7—C8—H8B109.9
C3—C2—C1110.06 (15)C9—C8—H8B109.9
C3—C2—H2A109.6H8A—C8—H8B108.3
C1—C2—H2A109.6C8—C9—H9A109.5
C3—C2—H2B109.6C8—C9—H9B109.5
C1—C2—H2B109.6H9A—C9—H9B109.5
H2A—C2—H2B108.2C8—C9—H9C109.5
C2—C3—H3A109.5H9A—C9—H9C109.5
C2—C3—H3B109.5H9B—C9—H9C109.5
H3A—C3—H3B109.5C11—C10—N1115.39 (13)
C2—C3—H3C109.5C11—C10—H10A108.4
H3A—C3—H3C109.5N1—C10—H10A108.4
H3B—C3—H3C109.5C11—C10—H10B108.4
C5—C4—N1115.29 (16)N1—C10—H10B108.4
C5—C4—H4A108.5H10A—C10—H10B107.5
N1—C4—H4A108.5C10—C11—C12111.21 (18)
C5—C4—H4B108.5C10—C11—H11A109.4
N1—C4—H4B108.5C12—C11—H11A109.4
H4A—C4—H4B107.5C10—C11—H11B109.4
C4—C5—C6109.7 (2)C12—C11—H11B109.4
C4—C5—H5A109.7H11A—C11—H11B108.0
C6—C5—H5A109.7C11—C12—H12A109.5
C4—C5—H5B109.7C11—C12—H12B109.5
C6—C5—H5B109.7H12A—C12—H12B109.5
H5A—C5—H5B108.2C11—C12—H12C109.5
C5—C6—H6A109.5H12A—C12—H12C109.5
C5—C6—H6B109.5H12B—C12—H12C109.5
H6A—C6—H6B109.5
C4—N1—C1—C254.78 (19)C4—N1—C7—C868.64 (19)
C10—N1—C1—C264.37 (18)C1—N1—C7—C8170.30 (15)
C7—N1—C1—C2175.45 (15)C10—N1—C7—C850.42 (19)
N1—C1—C2—C3179.85 (18)N1—C7—C8—C9179.81 (16)
C1—N1—C4—C553.15 (19)C4—N1—C10—C11179.35 (16)
C10—N1—C4—C5174.08 (16)C1—N1—C10—C1159.08 (19)
C7—N1—C4—C564.80 (19)C7—N1—C10—C1158.3 (2)
N1—C4—C5—C6175.66 (17)N1—C10—C11—C12171.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Cl10.86 (1)2.37 (1)3.227 (2)175 (2)
O1—H12···Cl1i0.86 (1)2.51 (1)3.352 (2)168 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H28N+·Cl·H2O
Mr239.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.4228 (2), 17.4383 (4), 10.6885 (2)
β (°) 97.892 (1)
V3)1555.05 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.60 × 0.40 × 0.35
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.769, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9762, 3562, 2719
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.150, 1.02
No. of reflections3562
No. of parameters144
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Cl10.86 (1)2.37 (1)3.227 (2)175 (2)
O1—H12···Cl1i0.86 (1)2.51 (1)3.352 (2)168 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Beijing Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLipkowski, J., Luboradzki, R. & Udachin, K. A. (1997). Supramol. Chem. 8, 281–286.  Web of Science CSD CrossRef CAS Google Scholar
First citationLipkowski, J., Luboradzki, R., Udachin, K. & Dyadin, Y. (1992). J. Inclusion Phenom. 13, 295.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYoshida, T., Nagata, K., Yasuniwa, M., Yoshimatsu, M. & Wunderlich, B. (1994). Acta Cryst. C50, 1758–1760.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationZalkin, A. (1957). Acta Cryst. 10, 557–560.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds