organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o889-o890

(E)-3-(4-Decyl­oxyphen­yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 23 March 2009; accepted 24 March 2009; online 28 March 2009)

In the title compound, C25H32O3, the enone group is in an scis configuration. The dihedral angle between the benzene rings is 8.84 (7)°. An intra­molecular O—H⋯O inter­action between the keto and hydr­oxy groups forms an S(6) ring motif. Inter­molecular C—H⋯O inter­actions link the mol­ecules into supra­molecular chains along the c axis which are subsequently stacked down the b axis; the crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For general background, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883-889.]); Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]); Zhao et al. (2005[Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027-5029.]). For related structures, see: Ng, Razak et al. (2006[Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175-o2177.]); Ng, Patil et al. (2006[Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1228-o1230.]); Razak et al. (2009[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009). Acta Cryst. E65, o881-o882.]); Ngaini et al. (2009[Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879-o880.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, 1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.].

[Scheme 1]

Experimental

Crystal data
  • C25H32O3

  • Mr = 380.51

  • Monoclinic, P 21 /c

  • a = 21.2700 (4) Å

  • b = 7.6779 (2) Å

  • c = 13.2330 (3) Å

  • β = 101.720 (1)°

  • V = 2116.01 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.44 × 0.28 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.997

  • 25687 measured reflections

  • 6221 independent reflections

  • 4014 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.165

  • S = 1.04

  • 6221 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.91 (2) 1.68 (2) 2.526 (2) 152 (2)
C15—H15A⋯O3i 0.93 2.48 3.406 (2) 174
C20—H20BCg1ii 0.97 2.85 3.702 (2) 147
C22—H22ACg1iii 0.97 2.84 3.712 (2) 149
C16—H16ACg2iii 0.97 2.87 3.596 (2) 132
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcone is one of the important intermediates in the biosynthesis of flavonoid. Chalcones derivatives are reported to exhibit biological properties such as an anti-malarial (Xue et al., 2004), anti-cancer (Bhat et al., 2005), anti-inflammatory (Won et al., 2005), anti-platelet (Zhao et al., 2005), and as well as anti-hyperglycemic (Satyanarayana et al., 2004) activities.

Chalcone derivatives possessing alkyl chains of varying length have been synthesized in our laboratory. They were tested against E. coli ATCC 8739 for their anti-bacterial activities and showed anti-microbial activity. In this paper, we report the structure of one of the chalcone derivatives mentioned above.

In (I), Fig. 1, the enone group is in an s-cis configuration as indicated by the torsion angle O2—C7—C8—C9 of 1.2 (2)°. The least-square plane through the enone moiety makes dihedral angle of 3.64 (10)° with C1—C6 benzene ring whereas the dihedral angle formed with the C10—C15 benzene ring is 7.72 (10)°. The dihedral angle between these benzene rings is 8.84 (7)°. The alkoxyl group is co-planar with the attached benzene ring as shown by the torsion angle C16—O3—C13—C14 of -1.6 (2)°.

The strain induced by a short H5A···H8A contact (2.11 Å) leads to the slight opening of the C5—C6—C7 angle to 123.03 (13)°. Likewise, the widening of C8—C9—C10 (128.65 (14)°) and C9—C10—C11 (123.18 (13)°) angles are the result of a close H8A···H11A (2.32 Å) interatomic contact. These features were also observed in related structures reported previously (Ng, Razak et al., 2006; Ng, Patil et al., 2006; Razak et al., 2009; Ngaini et al., 2009). An intramolecular O1-H1O1···O2 interaction between the keto group and the hydroxy generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal structure, C15—H15A···O3 (x, -y + 1/2, z + 1/2) intermolecular interactions link the molecules into extended chains along the c axis (Table 1 and Fig. 2). These chains are subsequently stacked down the b axis. The crystal packing is further stabilized by the presence of C—H···π interactions formed between atoms C16, C20 and C22 in the alkoxyl tail and the benzene rings (Table 1).

Related literature top

For general background, see: Bhat et al. (2005); Xue et al. (2004); Satyanarayana et al. (2004); Won et al. (2005); Zhao et al. (2005). For related structures, see: Ng, Razak et al. (2006); Ng, Patil et al. (2006); Razak et al. (2009); Ngaini et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, 1986. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Experimental top

A mixture of 2-hydroxyacetophenone (2.72 ml, 20 mmol), 4-decyloxybenzaldehyde (5.25 ml, 20 mmol) and KOH (4.04 g, 72 mmol) in methanol (60 ml) was heated at reflux for 10 h. The reaction mixture was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in hexane and followed by few days of slow evaporation, crystals were collected.

Refinement top

All the C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq(C) for methyl-H and 1.2Ueq(C) for other H atoms. The rotating model group was applied for the methyl group. In the case of O1, the hydrogen atom was located from a difference Fourier map and refined without constraints.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing viewed down the b axis.
(E)-3-(4-Decyloxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C25H32O3F(000) = 824
Mr = 380.51Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 21.2700 (4) Åθ = 2.8–30.1°
b = 7.6779 (2) ŵ = 0.08 mm1
c = 13.2330 (3) ÅT = 100 K
β = 101.720 (1)°Plate, yellow
V = 2116.01 (8) Å30.44 × 0.28 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6221 independent reflections
Radiation source: sealed tube4014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
π and ω scansθmax = 30.1°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3030
Tmin = 0.967, Tmax = 0.997k = 1010
25687 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
6221 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C25H32O3V = 2116.01 (8) Å3
Mr = 380.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.2700 (4) ŵ = 0.08 mm1
b = 7.6779 (2) ÅT = 100 K
c = 13.2330 (3) Å0.44 × 0.28 × 0.04 mm
β = 101.720 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6221 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4014 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.997Rint = 0.056
25687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
6221 reflectionsΔρmin = 0.26 e Å3
258 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77177 (6)0.18603 (17)1.07201 (8)0.0262 (3)
O20.67717 (5)0.08052 (16)0.93853 (8)0.0229 (3)
O30.46966 (5)0.31479 (15)0.38134 (8)0.0184 (3)
C10.80643 (7)0.1716 (2)0.99763 (11)0.0190 (3)
C20.87159 (7)0.2144 (2)1.02373 (12)0.0221 (4)
H2A0.88950.25021.09050.026*
C30.90932 (8)0.2037 (2)0.95104 (13)0.0238 (4)
H3A0.95270.23170.96910.029*
C40.88302 (7)0.1510 (2)0.85025 (12)0.0243 (4)
H4A0.90870.14470.80120.029*
C50.81885 (7)0.1087 (2)0.82397 (12)0.0202 (4)
H5A0.80150.07480.75660.024*
C60.77893 (7)0.1153 (2)0.89626 (11)0.0164 (3)
C70.71034 (7)0.0670 (2)0.87122 (11)0.0168 (3)
C80.68075 (7)0.0001 (2)0.76851 (11)0.0170 (3)
H8A0.70500.00830.71760.020*
C90.61889 (7)0.0488 (2)0.74806 (11)0.0162 (3)
H9A0.59730.03650.80210.019*
C100.58106 (7)0.1188 (2)0.65252 (11)0.0148 (3)
C110.60383 (7)0.1283 (2)0.56004 (11)0.0173 (3)
H11A0.64510.08980.55830.021*
C120.56528 (7)0.1943 (2)0.47184 (11)0.0181 (3)
H12A0.58060.19930.41090.022*
C130.50347 (7)0.2538 (2)0.47327 (11)0.0155 (3)
C140.48019 (7)0.2480 (2)0.56425 (11)0.0169 (3)
H14A0.43930.28910.56610.020*
C150.51927 (7)0.1794 (2)0.65231 (11)0.0178 (3)
H15A0.50370.17380.71300.021*
C160.40477 (7)0.3738 (2)0.37618 (11)0.0166 (3)
H16A0.40400.46900.42410.020*
H16B0.37840.27980.39350.020*
C170.37994 (7)0.4340 (2)0.26649 (11)0.0167 (3)
H17A0.38360.33890.21980.020*
H17B0.40680.52860.25120.020*
C180.31030 (7)0.4956 (2)0.24639 (11)0.0174 (3)
H18A0.30630.59220.29190.021*
H18B0.28300.40180.26130.021*
C190.28817 (7)0.5531 (2)0.13439 (11)0.0171 (3)
H19A0.31530.64840.12120.021*
H19B0.29460.45710.08990.021*
C200.21838 (7)0.6114 (2)0.10436 (11)0.0179 (3)
H20A0.21130.70860.14760.022*
H20B0.19060.51670.11610.022*
C210.20115 (7)0.6662 (2)0.00900 (11)0.0197 (3)
H21A0.22930.76080.01970.024*
H21B0.20950.56900.05120.024*
C220.13201 (7)0.7246 (2)0.04652 (11)0.0198 (3)
H22A0.12310.82180.00480.024*
H22B0.10340.63000.03750.024*
C230.11847 (7)0.7792 (2)0.15963 (12)0.0210 (4)
H23A0.14670.87510.16770.025*
H23B0.12890.68260.20060.025*
C240.04954 (7)0.8345 (2)0.20226 (12)0.0223 (4)
H24A0.04000.93750.16570.027*
H24B0.02080.74240.18990.027*
C250.03726 (8)0.8736 (3)0.31744 (13)0.0296 (4)
H25A0.00620.91240.34020.044*
H25B0.04410.77000.35440.044*
H25C0.06620.96300.33040.044*
H1O10.7313 (10)0.153 (3)1.0406 (17)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (6)0.0380 (8)0.0154 (5)0.0058 (6)0.0043 (4)0.0038 (5)
O20.0205 (6)0.0322 (7)0.0166 (5)0.0022 (5)0.0052 (4)0.0040 (5)
O30.0157 (5)0.0255 (7)0.0137 (5)0.0054 (5)0.0025 (4)0.0040 (4)
C10.0206 (8)0.0206 (9)0.0152 (7)0.0009 (7)0.0024 (6)0.0017 (6)
C20.0218 (8)0.0255 (10)0.0162 (7)0.0055 (7)0.0025 (6)0.0014 (6)
C30.0182 (8)0.0260 (10)0.0258 (8)0.0050 (7)0.0008 (6)0.0011 (7)
C40.0202 (8)0.0302 (10)0.0234 (8)0.0027 (8)0.0066 (6)0.0020 (7)
C50.0207 (8)0.0217 (9)0.0178 (7)0.0012 (7)0.0027 (6)0.0028 (6)
C60.0160 (7)0.0162 (8)0.0161 (7)0.0003 (6)0.0009 (5)0.0002 (6)
C70.0180 (7)0.0154 (8)0.0164 (7)0.0009 (6)0.0020 (5)0.0005 (6)
C80.0191 (7)0.0172 (8)0.0147 (7)0.0002 (7)0.0033 (5)0.0011 (6)
C90.0194 (7)0.0155 (8)0.0139 (7)0.0026 (6)0.0039 (5)0.0023 (6)
C100.0151 (7)0.0147 (8)0.0140 (6)0.0009 (6)0.0018 (5)0.0003 (6)
C110.0155 (7)0.0187 (9)0.0181 (7)0.0020 (6)0.0041 (5)0.0015 (6)
C120.0187 (7)0.0221 (9)0.0146 (7)0.0018 (7)0.0062 (5)0.0011 (6)
C130.0169 (7)0.0152 (8)0.0136 (7)0.0003 (6)0.0016 (5)0.0003 (6)
C140.0135 (7)0.0204 (9)0.0170 (7)0.0015 (6)0.0034 (5)0.0016 (6)
C150.0167 (7)0.0230 (9)0.0144 (7)0.0017 (7)0.0048 (5)0.0004 (6)
C160.0131 (7)0.0211 (9)0.0159 (7)0.0018 (6)0.0036 (5)0.0008 (6)
C170.0165 (7)0.0180 (8)0.0154 (7)0.0013 (6)0.0024 (5)0.0010 (6)
C180.0162 (7)0.0207 (9)0.0153 (7)0.0017 (7)0.0027 (5)0.0016 (6)
C190.0161 (7)0.0197 (9)0.0154 (7)0.0004 (6)0.0030 (5)0.0018 (6)
C200.0168 (7)0.0190 (9)0.0178 (7)0.0006 (7)0.0028 (5)0.0007 (6)
C210.0179 (7)0.0232 (9)0.0175 (7)0.0037 (7)0.0023 (6)0.0015 (6)
C220.0192 (7)0.0213 (9)0.0186 (7)0.0018 (7)0.0029 (6)0.0009 (6)
C230.0194 (8)0.0236 (9)0.0191 (7)0.0021 (7)0.0016 (6)0.0005 (6)
C240.0180 (7)0.0244 (10)0.0228 (8)0.0023 (7)0.0005 (6)0.0014 (7)
C250.0279 (9)0.0333 (11)0.0238 (8)0.0024 (8)0.0038 (7)0.0034 (7)
Geometric parameters (Å, º) top
O1—C11.3488 (18)C16—C171.5126 (19)
O1—H1O10.91 (2)C16—H16A0.9700
O2—C71.2479 (17)C16—H16B0.9700
O3—C131.3643 (17)C17—C181.526 (2)
O3—C161.4411 (17)C17—H17A0.9700
C1—C21.398 (2)C17—H17B0.9700
C1—C61.418 (2)C18—C191.5263 (19)
C2—C31.375 (2)C18—H18A0.9700
C2—H2A0.9300C18—H18B0.9700
C3—C41.397 (2)C19—C201.524 (2)
C3—H3A0.9300C19—H19A0.9700
C4—C51.377 (2)C19—H19B0.9700
C4—H4A0.9300C20—C211.529 (2)
C5—C61.403 (2)C20—H20A0.9700
C5—H5A0.9300C20—H20B0.9700
C6—C71.476 (2)C21—C221.521 (2)
C7—C81.469 (2)C21—H21A0.9700
C8—C91.342 (2)C21—H21B0.9700
C8—H8A0.9300C22—C231.524 (2)
C9—C101.4563 (19)C22—H22A0.9700
C9—H9A0.9300C22—H22B0.9700
C10—C151.394 (2)C23—C241.520 (2)
C10—C111.406 (2)C23—H23A0.9700
C11—C121.379 (2)C23—H23B0.9700
C11—H11A0.9300C24—C251.523 (2)
C12—C131.395 (2)C24—H24A0.9700
C12—H12A0.9300C24—H24B0.9700
C13—C141.393 (2)C25—H25A0.9600
C14—C151.390 (2)C25—H25B0.9600
C14—H14A0.9300C25—H25C0.9600
C15—H15A0.9300
C1—O1—H1O1104.5 (14)C16—C17—H17A108.9
C13—O3—C16118.47 (11)C18—C17—H17A108.9
O1—C1—C2117.51 (14)C16—C17—H17B108.9
O1—C1—C6122.27 (14)C18—C17—H17B108.9
C2—C1—C6120.21 (14)H17A—C17—H17B107.7
C3—C2—C1120.24 (14)C17—C18—C19110.85 (12)
C3—C2—H2A119.9C17—C18—H18A109.5
C1—C2—H2A119.9C19—C18—H18A109.5
C2—C3—C4120.52 (14)C17—C18—H18B109.5
C2—C3—H3A119.7C19—C18—H18B109.5
C4—C3—H3A119.7H18A—C18—H18B108.1
C5—C4—C3119.56 (15)C20—C19—C18115.48 (12)
C5—C4—H4A120.2C20—C19—H19A108.4
C3—C4—H4A120.2C18—C19—H19A108.4
C4—C5—C6121.68 (14)C20—C19—H19B108.4
C4—C5—H5A119.2C18—C19—H19B108.4
C6—C5—H5A119.2H19A—C19—H19B107.5
C5—C6—C1117.76 (13)C19—C20—C21111.31 (12)
C5—C6—C7123.03 (13)C19—C20—H20A109.4
C1—C6—C7119.21 (13)C21—C20—H20A109.4
O2—C7—C8119.42 (13)C19—C20—H20B109.4
O2—C7—C6119.67 (13)C21—C20—H20B109.4
C8—C7—C6120.90 (13)H20A—C20—H20B108.0
C9—C8—C7120.17 (14)C22—C21—C20115.12 (12)
C9—C8—H8A119.9C22—C21—H21A108.5
C7—C8—H8A119.9C20—C21—H21A108.5
C8—C9—C10128.65 (14)C22—C21—H21B108.5
C8—C9—H9A115.7C20—C21—H21B108.5
C10—C9—H9A115.7H21A—C21—H21B107.5
C15—C10—C11118.18 (13)C21—C22—C23112.27 (12)
C15—C10—C9118.64 (13)C21—C22—H22A109.2
C11—C10—C9123.18 (13)C23—C22—H22A109.2
C12—C11—C10120.31 (14)C21—C22—H22B109.2
C12—C11—H11A119.8C23—C22—H22B109.2
C10—C11—H11A119.8H22A—C22—H22B107.9
C11—C12—C13120.56 (13)C24—C23—C22114.63 (13)
C11—C12—H12A119.7C24—C23—H23A108.6
C13—C12—H12A119.7C22—C23—H23A108.6
O3—C13—C14124.49 (13)C24—C23—H23B108.6
O3—C13—C12115.33 (12)C22—C23—H23B108.6
C14—C13—C12120.18 (13)H23A—C23—H23B107.6
C15—C14—C13118.67 (14)C23—C24—C25112.51 (14)
C15—C14—H14A120.7C23—C24—H24A109.1
C13—C14—H14A120.7C25—C24—H24A109.1
C14—C15—C10122.08 (14)C23—C24—H24B109.1
C14—C15—H15A119.0C25—C24—H24B109.1
C10—C15—H15A119.0H24A—C24—H24B107.8
O3—C16—C17106.62 (11)C24—C25—H25A109.5
O3—C16—H16A110.4C24—C25—H25B109.5
C17—C16—H16A110.4H25A—C25—H25B109.5
O3—C16—H16B110.4C24—C25—H25C109.5
C17—C16—H16B110.4H25A—C25—H25C109.5
H16A—C16—H16B108.6H25B—C25—H25C109.5
C16—C17—C18113.54 (12)
O1—C1—C2—C3179.46 (16)C9—C10—C11—C12179.31 (15)
C6—C1—C2—C30.6 (3)C10—C11—C12—C130.5 (2)
C1—C2—C3—C40.4 (3)C16—O3—C13—C141.6 (2)
C2—C3—C4—C50.4 (3)C16—O3—C13—C12178.28 (13)
C3—C4—C5—C60.6 (3)C11—C12—C13—O3179.46 (14)
C4—C5—C6—C11.5 (2)C11—C12—C13—C140.4 (2)
C4—C5—C6—C7178.57 (16)O3—C13—C14—C15178.78 (14)
O1—C1—C6—C5178.55 (15)C12—C13—C14—C151.1 (2)
C2—C1—C6—C51.5 (2)C13—C14—C15—C100.9 (2)
O1—C1—C6—C71.4 (2)C11—C10—C15—C140.0 (2)
C2—C1—C6—C7178.58 (15)C9—C10—C15—C14179.99 (14)
C5—C6—C7—O2178.04 (16)C13—O3—C16—C17179.70 (13)
C1—C6—C7—O21.9 (2)O3—C16—C17—C18178.01 (13)
C5—C6—C7—C83.0 (2)C16—C17—C18—C19179.58 (13)
C1—C6—C7—C8177.06 (15)C17—C18—C19—C20177.93 (14)
O2—C7—C8—C91.2 (2)C18—C19—C20—C21179.96 (14)
C6—C7—C8—C9177.73 (15)C19—C20—C21—C22179.28 (14)
C7—C8—C9—C10179.58 (15)C20—C21—C22—C23179.36 (14)
C8—C9—C10—C15172.82 (16)C21—C22—C23—C24178.50 (14)
C8—C9—C10—C117.2 (3)C22—C23—C24—C25175.39 (15)
C15—C10—C11—C120.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.91 (2)1.68 (2)2.526 (2)152 (2)
C15—H15A···O3i0.932.483.406 (2)174
C20—H20B···Cg1ii0.972.853.702 (2)147
C22—H22A···Cg1iii0.972.843.712 (2)149
C16—H16A···Cg2iii0.972.873.596 (2)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H32O3
Mr380.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)21.2700 (4), 7.6779 (2), 13.2330 (3)
β (°) 101.720 (1)
V3)2116.01 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.44 × 0.28 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.967, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
25687, 6221, 4014
Rint0.056
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.165, 1.04
No. of reflections6221
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.91 (2)1.68 (2)2.526 (2)152 (2)
C15—H15A···O3i0.932.483.406 (2)174
C20—H20B···Cg1ii0.972.853.702 (2)147
C22—H22A···Cg1iii0.972.843.712 (2)149
C16—H16A···Cg2iii0.972.873.596 (2)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5169-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the award of the Science Fund grant No. 305/PFIZIK/613312 and for the Research University Golden Goose grant No. 1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007(01). NIAR thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for postgraduate studies.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1228–o1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175–o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009). Acta Cryst. E65, o881–o882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o889-o890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds