organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Di­chloro-1,10-phenanthroline

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 March 2009; accepted 26 March 2009; online 31 March 2009)

The title mol­ecule, C12H6Cl2N2, is almost planar (the r.m.s. deviation of C atoms is 0.04 Å). The C—N and C—C distances indicate delocalization of the π-electrons in the aromatic fused-ring system.

Related literature

For the synthesis, see: Yamada et al. (1990[Yamada, M., Nakamura, Y., Kuroda, S. & Shimao, I. (1990). Bull. Chem. Soc. Jpn, 63, 2710-2712.]). The compound is used for the synthesis of other phenanthroline-like heterocycles; see: Hamilton et al. (2004[Hamilton, C. W., Laitar, D. S. & Sadighi, J. P. (2004). Chem. Commun. pp. 1628-1629.]); Ohira et al. (2005[Ohira, J., Hirabayashi, M., Nakayama, N. & Ogawa, S. (2005). Nippon Kagakkai Yokoshu, 85, p. 942. (Abstract.)]); Zong & Thummel (2004[Zong, F. & Thummel, R. P. (2004). J. Am. Chem. Soc. 126, 10800-10801.], 2005[Zong, F. & Thummel, R. P. (2005). Inorg. Chem. 44, 5984-4986.]).

[Scheme 1]

Experimental

Crystal data
  • C12H6Cl2N2

  • Mr = 249.09

  • Orthorhombic, P n a 21

  • a = 19.4035 (3) Å

  • b = 4.4330 (1) Å

  • c = 11.7695 (2) Å

  • V = 1012.36 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 100 K

  • 0.36 × 0.18 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.811, Tmax = 0.988

  • 8646 measured reflections

  • 2315 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.02

  • 2315 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1097 Friedel pairs

  • Flack parameter: −0.01 (4)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis, see: Yamada et al. (1990). The compound is used for the synthesis of other phenanthroline-like heterocycles; see: Hamilton et al. (2004); Ohira et al. (2005); Zong & Thummel (2004, 2005).

Experimental top

A mixture of 6,7-dihydro-3H-[1,4]diazepino[1,2,3,4-lmn][1,10]phenanthroline-3,9(5H)-dione (1.7 g, 6.7 mmol) and phosphorus pentachloride (3 g, 14.4 mmol) was reacted in thionyl chloride (20 ml, 170 mmol) for 16 h at room temperature. The thionyl chloride was removed under reduced pressure and the residue was suspended in cold ammonium hydroxide. A light-tan precipitate was formed which was dissolved in hot benzene; crystals were obtained upon recrystallization from benzene (1.1 g 65%)

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of C12H6Cl2N2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2,9-Dichloro-1,10-phenanthroline top
Crystal data top
C12H6Cl2N2F(000) = 504
Mr = 249.09Dx = 1.634 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5870 reflections
a = 19.4035 (3) Åθ = 2.7–28.3°
b = 4.4330 (1) ŵ = 0.61 mm1
c = 11.7695 (2) ÅT = 100 K
V = 1012.36 (3) Å3Plate, colourless
Z = 40.36 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
2315 independent reflections
Radiation source: fine-focus sealed tube2248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.811, Tmax = 0.988k = 55
8646 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.147P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2315 reflectionsΔρmax = 0.27 e Å3
145 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1097 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
C12H6Cl2N2V = 1012.36 (3) Å3
Mr = 249.09Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.4035 (3) ŵ = 0.61 mm1
b = 4.4330 (1) ÅT = 100 K
c = 11.7695 (2) Å0.36 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
2315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2248 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.988Rint = 0.022
8646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.27 e Å3
S = 1.02Δρmin = 0.16 e Å3
2315 reflectionsAbsolute structure: Flack (1983), 1097 Friedel pairs
145 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.027691 (18)0.55270 (8)0.25010 (3)0.01876 (10)
Cl20.35805 (2)0.89704 (8)0.45699 (4)0.02052 (10)
N10.11803 (7)0.4349 (3)0.40752 (11)0.0151 (3)
N20.24727 (7)0.5756 (3)0.48930 (11)0.0153 (3)
C10.05604 (8)0.3672 (3)0.37354 (12)0.0158 (3)
C20.01038 (8)0.1645 (4)0.42492 (13)0.0183 (3)
H20.03410.12690.39450.022*
C30.03326 (8)0.0226 (4)0.52172 (14)0.0184 (3)
H30.00460.11920.55950.022*
C40.09941 (8)0.0884 (3)0.56464 (14)0.0159 (3)
C50.14049 (8)0.2979 (4)0.50487 (12)0.0150 (3)
C60.12494 (9)0.0487 (3)0.66693 (14)0.0178 (3)
H60.09800.19680.70480.021*
C70.18689 (8)0.0307 (4)0.70984 (13)0.0176 (3)
H70.20250.05870.77850.021*
C80.22933 (8)0.2478 (3)0.65313 (13)0.0158 (3)
C90.20767 (8)0.3756 (3)0.54864 (13)0.0150 (3)
C100.29315 (8)0.3417 (4)0.69870 (14)0.0189 (3)
H100.30880.26470.76950.023*
C110.33217 (9)0.5458 (4)0.63927 (14)0.0195 (3)
H110.37520.61520.66760.023*
C120.30611 (7)0.6483 (3)0.53484 (13)0.0164 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01835 (17)0.02130 (17)0.01663 (17)0.00087 (13)0.00441 (14)0.00032 (15)
Cl20.01900 (17)0.02184 (16)0.02072 (17)0.00573 (14)0.00151 (15)0.00218 (15)
N10.0165 (6)0.0163 (6)0.0124 (6)0.0010 (5)0.0008 (5)0.0019 (5)
N20.0154 (6)0.0158 (6)0.0146 (6)0.0001 (5)0.0000 (5)0.0014 (4)
C10.0173 (7)0.0174 (7)0.0126 (7)0.0046 (6)0.0004 (6)0.0028 (5)
C20.0154 (7)0.0197 (7)0.0199 (8)0.0007 (6)0.0002 (6)0.0062 (6)
C30.0183 (8)0.0186 (7)0.0182 (8)0.0024 (6)0.0051 (6)0.0023 (6)
C40.0192 (7)0.0150 (7)0.0136 (7)0.0014 (5)0.0028 (6)0.0030 (5)
C50.0158 (7)0.0170 (7)0.0121 (6)0.0017 (5)0.0013 (5)0.0018 (6)
C60.0220 (8)0.0167 (7)0.0146 (7)0.0000 (6)0.0060 (7)0.0008 (6)
C70.0231 (8)0.0177 (7)0.0122 (6)0.0047 (6)0.0017 (6)0.0004 (6)
C80.0181 (7)0.0161 (7)0.0132 (7)0.0036 (6)0.0001 (6)0.0022 (5)
C90.0178 (7)0.0143 (6)0.0130 (7)0.0015 (5)0.0014 (6)0.0027 (6)
C100.0212 (8)0.0212 (8)0.0145 (7)0.0056 (6)0.0033 (6)0.0020 (6)
C110.0174 (8)0.0223 (8)0.0187 (8)0.0003 (6)0.0041 (6)0.0052 (6)
C120.0156 (7)0.0170 (7)0.0166 (7)0.0003 (6)0.0022 (6)0.0030 (6)
Geometric parameters (Å, º) top
Cl1—C11.758 (2)C4—C61.437 (2)
Cl2—C121.752 (2)C5—C91.443 (2)
N1—C11.303 (2)C6—C71.350 (2)
N1—C51.368 (2)C6—H60.9500
N2—C121.302 (2)C7—C81.432 (2)
N2—C91.365 (2)C7—H70.9500
C1—C21.399 (2)C8—C101.412 (2)
C2—C31.375 (2)C8—C91.418 (2)
C2—H20.9500C10—C111.372 (2)
C3—C41.410 (2)C10—H100.9500
C3—H30.9500C11—C121.405 (2)
C4—C51.412 (2)C11—H110.9500
C1—N1—C5116.68 (13)C4—C6—H6119.7
C12—N2—C9116.36 (14)C6—C7—C8120.86 (14)
N1—C1—C2126.86 (14)C6—C7—H7119.6
N1—C1—Cl1115.78 (12)C8—C7—H7119.6
C2—C1—Cl1117.36 (12)C10—C8—C9118.15 (14)
C3—C2—C1116.59 (14)C10—C8—C7121.70 (14)
C3—C2—H2121.7C9—C8—C7120.16 (14)
C1—C2—H2121.7N2—C9—C8122.43 (14)
C2—C3—C4119.74 (15)N2—C9—C5118.74 (14)
C2—C3—H3120.1C8—C9—C5118.81 (14)
C4—C3—H3120.1C11—C10—C8118.99 (15)
C3—C4—C5118.14 (15)C11—C10—H10120.5
C3—C4—C6121.77 (15)C8—C10—H10120.5
C5—C4—C6120.08 (14)C10—C11—C12117.45 (15)
N1—C5—C4121.97 (14)C10—C11—H11121.3
N1—C5—C9118.72 (14)C12—C11—H11121.3
C4—C5—C9119.29 (14)N2—C12—C11126.57 (15)
C7—C6—C4120.66 (15)N2—C12—Cl2116.43 (12)
C7—C6—H6119.7C11—C12—Cl2117.00 (12)
C5—N1—C1—C21.3 (2)C12—N2—C9—C81.2 (2)
C5—N1—C1—Cl1178.60 (10)C12—N2—C9—C5177.09 (13)
N1—C1—C2—C30.2 (2)C10—C8—C9—N22.5 (2)
Cl1—C1—C2—C3179.66 (12)C7—C8—C9—N2177.70 (13)
C1—C2—C3—C40.8 (2)C10—C8—C9—C5175.77 (13)
C2—C3—C4—C50.8 (2)C7—C8—C9—C54.0 (2)
C2—C3—C4—C6178.52 (14)N1—C5—C9—N22.1 (2)
C1—N1—C5—C41.3 (2)C4—C5—C9—N2179.17 (13)
C1—N1—C5—C9177.33 (14)N1—C5—C9—C8176.22 (13)
C3—C4—C5—N10.4 (2)C4—C5—C9—C82.5 (2)
C6—C4—C5—N1179.63 (14)C9—C8—C10—C111.5 (2)
C3—C4—C5—C9178.30 (14)C7—C8—C10—C11178.68 (15)
C6—C4—C5—C91.0 (2)C8—C10—C11—C120.5 (2)
C3—C4—C6—C7176.22 (15)C9—N2—C12—C111.1 (2)
C5—C4—C6—C73.0 (2)C9—N2—C12—Cl2178.34 (10)
C4—C6—C7—C81.5 (2)C10—C11—C12—N22.0 (2)
C6—C7—C8—C10177.72 (15)C10—C11—C12—Cl2177.45 (12)
C6—C7—C8—C92.1 (2)

Experimental details

Crystal data
Chemical formulaC12H6Cl2N2
Mr249.09
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)19.4035 (3), 4.4330 (1), 11.7695 (2)
V3)1012.36 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.36 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.811, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8646, 2315, 2248
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.02
No. of reflections2315
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.16
Absolute structureFlack (1983), 1097 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Organization for the Prohibition of Chemical Weapons and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamilton, C. W., Laitar, D. S. & Sadighi, J. P. (2004). Chem. Commun. pp. 1628–1629.  Web of Science CSD CrossRef Google Scholar
First citationOhira, J., Hirabayashi, M., Nakayama, N. & Ogawa, S. (2005). Nippon Kagakkai Yokoshu, 85, p. 942. (Abstract.)  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYamada, M., Nakamura, Y., Kuroda, S. & Shimao, I. (1990). Bull. Chem. Soc. Jpn, 63, 2710–2712.  CrossRef CAS Web of Science Google Scholar
First citationZong, F. & Thummel, R. P. (2004). J. Am. Chem. Soc. 126, 10800–10801.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZong, F. & Thummel, R. P. (2005). Inorg. Chem. 44, 5984–4986.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds