inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An ortho­rhom­bic polymorph of the ultraphosphate YP5O14

aLaboratoire de Chimie Industrielle, Département de Génie des Matériaux, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP W 3038, Sfax, Tunisia, bLaboratoire de Chimie du Solide Minéral, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco, and cLaboratoire des Matériaux Inorganiques, UMR CNRS 6002, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: malika.el-ghozzi@univ-bpclermont.fr

(Received 6 February 2009; accepted 26 February 2009; online 6 March 2009)

Single crystals of yttrium penta­phosphate(V), YP5O14, were obtained by solid-state reaction. The ortho­rhom­bic title compound belongs to the family of ultraphosphates and is the second polymorph of this composition. It is isotypic with its Ho and Er analogues. The structure contains two bridging Q2-type PO4 tetra­hedra and one branching Q3-type PO4 tetra­hedron, leading to infinite ultraphosphate ribbons running along the a axis. The coordination polyhedron around the Y3+ cation may be described as distorted bicapped trigonal-prismatic. The YO8 polyhedra are isolated from each other. They are linked by corner-sharing to the O atoms of six Q2-type and of two Q3-type PO4 tetra­hedra into a three-dimensional framework.

Related literature

Besides crystals of the title compound, crystals of the monoclinic polymorph were also obtained (Mbarek et al., 2009[Mbarek, A., Graia, M., Chadeyron, G., Zambon, D., Bouaziz, J. & Fourati, M. (2009). J. Solid State Chem. 182, 509-516.]). For isotypic structures, see: Durif (1972[Durif, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 437-440.]) for the Ho member; Katrusiak & Kaczmarek (1995[Katrusiak, A. & Kaczmarek, F. (1995). Cryst. Res. Technol. 30, 501-507.]) and Dimitrova et al. (2004[Dimitrova, O. V., Ksenofontov, D. A., Massa, W., Yakubovich, O. V. & Dorokhova, G. I. (2004). Vestn. Moskovskogo Univ. Geol. 3, 48-55.]) for the Er member. For a review of the crystal chemistry of ultraphosphates, see: Durif (1995[Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.]). For applications of rare earth ultraphosphates, see: Rao & Devine (2000[Rao, R. P. & Devine, D. J. (2000). J. Lumin. 87-89, 1260-1263.]); Moine & Bizarri (2006[Moine, B. & Bizarri, G. (2006). Opt. Mater. 28, 58-63.]). For general background, see: Porai-Koshits & Aslanov (1972[Porai-Koshits, M. A. & Aslanov, L. A. (1972). J. Struct. Chem. 13, 244-253.]).

Experimental

Crystal data
  • YP5O14

  • Mr = 467.76

  • Orthorhombic, P n m a

  • a = 8.7128 (2) Å

  • b = 12.7218 (4) Å

  • c = 8.9377 (3) Å

  • V = 990.68 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.79 mm−1

  • T = 296 K

  • 0.22 × 0.15 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.330, Tmax = 0.460

  • 5338 measured reflections

  • 1194 independent reflections

  • 1136 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.110

  • S = 1.22

  • 1194 reflections

  • 97 parameters

  • Δρmax = 1.60 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Selected bond lengths (Å)

Y1—O6 2.278 (3)
Y1—O6i 2.278 (3)
Y1—O4i 2.341 (3)
Y1—O4 2.341 (3)
Y1—O8i 2.391 (4)
Y1—O8 2.391 (4)
Y1—O1 2.455 (5)
Y1—O3 2.518 (5)
P1—O8ii 1.455 (4)
P1—O2 1.549 (4)
P1—O5 1.553 (3)
P1—O7 1.567 (3)
P2—O3iii 1.460 (5)
P2—O1 1.479 (5)
P2—O2 1.623 (4)
P2—O2i 1.623 (4)
P3—O4 1.467 (3)
P3—O6iv 1.468 (3)
P3—O7v 1.607 (3)
P3—O5vi 1.611 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) -x, -y+1, -z; (vi) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: CaRIne (Boudias & Monceau, 1998[Boudias, C. & Monceau, D. (1998). CaRIne. CaRIne Crystallography, DIVERGENT S. A., Compiègne, France.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Rare earths ultraphosphates exhibit a growing attention because of their potential applications as optical materials, including lasers, phosphors, matrices for the energy up-conversion and more recently for plasma display panels (PDP) as they exhibit an absorption band overlapping the emission spectrum of a Xe—Ne plasma in the VUV region (Rao & Devine, 2000; Moine & Bizarri, 2006). The non-optically active matrix of YP5O14 can be used as host material for such applications and hence needs to be structurally well-characterized. This article deals with the crystal structure refinement of the orthorhombic polymorph that is isotypic with HoP5O14 (Durif, 1972) and ErP5O14 (Katrusiak & Kaczmarek, 1995; Dimitrova et al. 2004).

Two PO4 tetrahedra are Q2 type bridging tetrahedra with typical two shorter and two longer P—O bonds (Durif, 1995). The third PO4 tetrahedron is a branching Q3 type tetrahedron and exhibits also characteristic bond lengths ranging from 1.455 (4) to 1.567 (3) Å. These PO4 groups form infinite ribbons with composition (P5O14)3- which can be considered as built of two infinite (PO3)n chains running along the a axis and connected by alternating up and down capping PO4 tetrahedra (Figs. 1, 2). The repetition unit in these ribbons is P10O28.

The coordination polyhedron around the Y3+ cation is a distorted bicapped trigonal prism according to criteria defined by Porai-Koshits & Aslanov (1972) with (δ1 = 0°, δ2 = 18.28°, δ3 = δ4 = 42.87°; theoretical values δ1 = 0°, δ2 = 21.7°, δ3 = δ4 = 48.2°). The YO8 polyhedra are isolated from each other. They are linked by corner-sharing to six Q2 type PO4 tetrahedra and to two Q3 type tetrahedra leading to the three-dimensional framework.

Related literature top

Besides crystals of the title compound, crystals of the monoclinic polymorph were also obtained (Mbarek et al., 2009). For isotypic structures, see: Durif (1972) for the Ho member; Katrusiak & Kaczmarek (1995) and Dimitrova et al. (2004) for the Er member. For a review of the crystal chemistry of ultraphosphates, see: Durif (1995). For applications of rare earth ultraphosphates, see: Rao & Devine (2000); Moine & Bizarri (2006). For general background, see: Porai-Koshits & Aslanov (1972).

Experimental top

Crystals of the title compounds were synthesized by reacting Y2O3 with (NH4)2HPO4 in a graphite crucible. A mixture of these reagents in the molar ratio 1:9 was used for the synthesis. The mixture was first heated at 473 K for 12 h. Then the temperature was raised up to 673 K and was held for 2 days before cooling to room temperature at a rate of 10 K/h. Single-crystals were extracted from the batch by washing with hot water. Besides crystals of the title compound, crystals of the monoclinic polymorph were also obtained (Mbarek et al., 2009).

Refinement top

The highest residual peak in the final difference Fourier maps was located 0.26 Å from atom Y1 and the deepest hole was located 0.44 Å from atom P2.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CaRIne (Boudias & Monceau, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Projection along [100] of the structure of YP5O14 showing the isolated (P5O14)3- ribbons.
[Figure 2] Fig. 2. Details of the (P5O14)3- ribbon in a projection along [001], symmetry codes: (i) x, -y+1/2, z; (iii) x+1/2, y, -z+1/2; (ix) x+1/2, 1/2-y+1/2, 1/2-z.
yttrium pentaphosphate(V) top
Crystal data top
YP5O14F(000) = 904
Mr = 467.76Dx = 3.136 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3391 reflections
a = 8.7128 (2) Åθ = 3.6–27.5°
b = 12.7218 (4) ŵ = 6.79 mm1
c = 8.9377 (3) ÅT = 296 K
V = 990.68 (5) Å3Platelet, colourless
Z = 40.22 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1194 independent reflections
Radiation source: fine-focus sealed tube1136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.3333 pixels mm-1θmax = 27.6°, θmin = 2.8°
ϕ and ω scansh = 711
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1616
Tmin = 0.330, Tmax = 0.460l = 117
5338 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.030Secondary atom site location: difference Fourier map
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0553P)2 + 6.1916P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
1194 reflectionsΔρmax = 1.60 e Å3
97 parametersΔρmin = 1.11 e Å3
0 restraints
Crystal data top
YP5O14V = 990.68 (5) Å3
Mr = 467.76Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.7128 (2) ŵ = 6.79 mm1
b = 12.7218 (4) ÅT = 296 K
c = 8.9377 (3) Å0.22 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1194 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1136 reflections with I > 2σ(I)
Tmin = 0.330, Tmax = 0.460Rint = 0.019
5338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03097 parameters
wR(F2) = 0.1100 restraints
S = 1.22Δρmax = 1.60 e Å3
1194 reflectionsΔρmin = 1.11 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.01824 (6)0.25000.05695 (6)0.0042 (2)
P10.49261 (13)0.41750 (10)0.20198 (13)0.0101 (3)
P20.4300 (2)0.25000.00645 (18)0.0117 (4)
P30.24466 (12)0.43269 (9)0.22692 (13)0.0104 (3)
O10.2739 (6)0.25000.0586 (5)0.0164 (10)
O20.5265 (4)0.3470 (3)0.0646 (4)0.0148 (7)
O30.0382 (6)0.25000.3332 (6)0.0193 (11)
O40.1756 (4)0.3732 (3)0.1035 (4)0.0166 (7)
O50.6146 (4)0.5051 (3)0.1804 (4)0.0146 (7)
O60.1567 (4)0.3836 (3)0.1598 (4)0.0172 (7)
O70.3374 (4)0.4704 (3)0.1552 (4)0.0150 (7)
O80.0066 (4)0.3649 (3)0.1534 (4)0.0191 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0044 (3)0.0036 (3)0.0045 (3)0.0000.00084 (18)0.000
P10.0105 (6)0.0099 (6)0.0101 (5)0.0001 (4)0.0002 (4)0.0000 (4)
P20.0129 (8)0.0116 (8)0.0107 (8)0.0000.0003 (6)0.000
P30.0089 (5)0.0100 (5)0.0123 (5)0.0004 (4)0.0002 (4)0.0001 (4)
O10.012 (2)0.020 (2)0.016 (2)0.0000.0002 (18)0.000
O20.0141 (16)0.0138 (17)0.0165 (17)0.0023 (13)0.0028 (12)0.0050 (13)
O30.020 (3)0.022 (3)0.015 (2)0.0000.001 (2)0.000
O40.0158 (16)0.0187 (17)0.0154 (15)0.0041 (14)0.0008 (13)0.0021 (13)
O50.0139 (16)0.0146 (15)0.0153 (15)0.0052 (13)0.0019 (13)0.0009 (13)
O60.0153 (17)0.0166 (16)0.0196 (16)0.0025 (13)0.0035 (14)0.0032 (13)
O70.0125 (15)0.0154 (15)0.0172 (16)0.0037 (13)0.0021 (13)0.0038 (13)
O80.0207 (19)0.0215 (19)0.0150 (16)0.0009 (14)0.0014 (13)0.0058 (16)
Geometric parameters (Å, º) top
Y1—O62.278 (3)P1—O51.553 (3)
Y1—O6i2.278 (3)P1—O71.567 (3)
Y1—O4i2.341 (3)P2—O3iii1.460 (5)
Y1—O42.341 (3)P2—O11.479 (5)
Y1—O8i2.391 (4)P2—O21.623 (4)
Y1—O82.391 (4)P2—O2i1.623 (4)
Y1—O12.455 (5)P3—O41.467 (3)
Y1—O32.518 (5)P3—O6iv1.468 (3)
P1—O8ii1.455 (4)P3—O7v1.607 (3)
P1—O21.549 (4)P3—O5vi1.611 (3)
O6—Y1—O6i96.52 (18)O1—Y1—O3126.14 (16)
O6—Y1—O4i144.08 (12)O8ii—P1—O2115.9 (2)
O6i—Y1—O4i79.10 (13)O8ii—P1—O5115.9 (2)
O6—Y1—O479.10 (13)O2—P1—O5100.76 (19)
O6i—Y1—O4144.08 (12)O8ii—P1—O7116.0 (2)
O4i—Y1—O484.04 (18)O2—P1—O7101.63 (19)
O6—Y1—O8i145.21 (13)O5—P1—O7104.42 (19)
O6i—Y1—O8i84.77 (13)O3iii—P2—O1124.1 (3)
O4i—Y1—O8i70.44 (12)O3iii—P2—O2106.61 (19)
O4—Y1—O8i118.93 (12)O1—P2—O2108.82 (17)
O6—Y1—O884.77 (13)O3iii—P2—O2i106.61 (19)
O6i—Y1—O8145.21 (13)O1—P2—O2i108.82 (17)
O4i—Y1—O8118.93 (12)O2—P2—O2i99.0 (3)
O4—Y1—O870.44 (12)O4—P3—O6iv122.6 (2)
O8i—Y1—O875.38 (19)O4—P3—O7v107.59 (18)
O6—Y1—O171.89 (11)O6iv—P3—O7v107.87 (19)
O6i—Y1—O171.89 (11)O4—P3—O5vi110.6 (2)
O4i—Y1—O1136.82 (9)O6iv—P3—O5vi105.42 (19)
O4—Y1—O1136.82 (9)O7v—P3—O5vi100.51 (18)
O8i—Y1—O175.61 (12)P2—O1—Y1132.0 (3)
O8—Y1—O175.61 (12)P1—O2—P2130.7 (2)
O6—Y1—O373.01 (12)P2iv—O3—Y1179.7 (3)
O6i—Y1—O373.01 (12)P3—O4—Y1140.8 (2)
O4i—Y1—O371.63 (12)P1—O5—P3vii140.4 (2)
O4—Y1—O371.63 (12)P3iii—O6—Y1155.0 (2)
O8i—Y1—O3138.88 (10)P1—O7—P3v131.1 (2)
O8—Y1—O3138.88 (10)P1viii—O8—Y1168.4 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+1, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaYP5O14
Mr467.76
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)8.7128 (2), 12.7218 (4), 8.9377 (3)
V3)990.68 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.79
Crystal size (mm)0.22 × 0.15 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.330, 0.460
No. of measured, independent and
observed [I > 2σ(I)] reflections
5338, 1194, 1136
Rint0.019
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.110, 1.22
No. of reflections1194
No. of parameters97
Δρmax, Δρmin (e Å3)1.60, 1.11

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), CaRIne (Boudias & Monceau, 1998), SHELXTL (Sheldrick, 2008b).

Selected bond lengths (Å) top
Y1—O62.278 (3)P1—O51.553 (3)
Y1—O6i2.278 (3)P1—O71.567 (3)
Y1—O4i2.341 (3)P2—O3iii1.460 (5)
Y1—O42.341 (3)P2—O11.479 (5)
Y1—O8i2.391 (4)P2—O21.623 (4)
Y1—O82.391 (4)P2—O2i1.623 (4)
Y1—O12.455 (5)P3—O41.467 (3)
Y1—O32.518 (5)P3—O6iv1.468 (3)
P1—O8ii1.455 (4)P3—O7v1.607 (3)
P1—O21.549 (4)P3—O5vi1.611 (3)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+1, z+1/2.
 

References

First citationBoudias, C. & Monceau, D. (1998). CaRIne. CaRIne Crystallography, DIVERGENT S. A., Compiègne, France.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimitrova, O. V., Ksenofontov, D. A., Massa, W., Yakubovich, O. V. & Dorokhova, G. I. (2004). Vestn. Moskovskogo Univ. Geol. 3, 48–55.  Google Scholar
First citationDurif, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 437–440.  Google Scholar
First citationDurif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.  Google Scholar
First citationKatrusiak, A. & Kaczmarek, F. (1995). Cryst. Res. Technol. 30, 501–507.  CrossRef CAS Web of Science Google Scholar
First citationMbarek, A., Graia, M., Chadeyron, G., Zambon, D., Bouaziz, J. & Fourati, M. (2009). J. Solid State Chem. 182, 509–516.  Web of Science CrossRef CAS Google Scholar
First citationMoine, B. & Bizarri, G. (2006). Opt. Mater. 28, 58–63.  Web of Science CrossRef CAS Google Scholar
First citationPorai-Koshits, M. A. & Aslanov, L. A. (1972). J. Struct. Chem. 13, 244–253.  CrossRef Google Scholar
First citationRao, R. P. & Devine, D. J. (2000). J. Lumin. 87–89, 1260–1263.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds