organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­phen­oxy)biphen­yl

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 15 January 2009; accepted 28 February 2009; online 6 March 2009)

The two phenyl rings of the biphenyl unit of the title compound, C18H13NO3, are almost coplanar [dihedral angle 6.70 (9)°]. The nitro­phenyl ring, on the other hand, is significantly twisted out of the plane of the these two rings, making dihedral angles of 68.83 (4)° with the middle ring and 62.86 (4)° with the end ring. The nitro group is twisted by 12.1 (2)° out of the plane of the phenyl ring to which it is attached.

Related literature

The title compound is a precursor of amine which is a useful curing agent of ep­oxy resins. For the properties and applications of ep­oxy resins, see: Boey & Yap (2001[Boey, F. Y. C. & Yap, B. H. (2001). Polym. Test. 20, 837-845.]); Bonnaud et al. (2004[Bonnaud, L., Pascault, J. P., Sautereau, H., Zhao, J. Q. & Jia, D. M. (2004). Eur. Polym. J. 40, 2637-3643.]); de Moris et al. (2007[Moris, A. B. de, Pereira, A. B., Teixeira, J. P. & Cavaleiro, N. C. (2007). Int. J. Adhes. Adhes. 27, 679-686.]); Van de Grampel et al. (2005[Grampel, D. R. van de, Ming, W., van Gennip, W. J. H., van der Velden, F., Laven, J., Niemantsverdriet, J. W. & van der Linde, R. (2005). Polymer, 46, 10531-10537.]); Agag & Takeichi (1999[Agag, T. & Takeichi, T. (1999). Polymer, 40, 6557-6563.]); Kagathera & Parsania (2001[Kagathera, V. M. & Parsania, P. H. (2001). Polym. Test. 20, 713-716.]); Kagathera & Parsania (2001[Kagathera, V. M. & Parsania, P. H. (2001). Polym. Test. 20, 713-716.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13NO3

  • Mr = 291.29

  • Monoclinic, P 21 /c

  • a = 9.6435 (7) Å

  • b = 5.8648 (3) Å

  • c = 24.6884 (18) Å

  • β = 95.704 (6)°

  • V = 1389.39 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.44 × 0.37 × 0.13 mm

Data collection
  • STOE IPDS II two-circle-diffractometer

  • Absorption correction: none

  • 16020 measured reflections

  • 2556 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.07

  • 2556 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Epoxy resins are a versatile group of crosslinked polymers that has excellent chemical resistance, good electrical insulating properties, good adhesion to glass and metal and can be easily fabricated (Boey & Yap, 2001). Variety of properties helps epoxy resins to meet performance requirements of some demanding applications (Bonnaud et al., 2004). These include areas as diverse as construction, electronics, adhesives and coatings (de Moris et al., 2007). The usefulness of epoxy resins is often limited due to their inherent brittleness arising from crosslinking structure (van de Grampel et al., 2005). Development of approaches for toughening epoxy resins without sacrificing modulus and glass transition temperature (Tg) would lead to an increase in their applications (Kagathera & Parsania, 2001). One such approach is the curing of epoxy resins with different curing agents (Agag & Takeichi, 1999). The title compound is a precursor of amine which is a useful curing agent of epoxy resins.

The two phenyl rings of the biphenyl moiety of the title compound are almost coplanar [dihedral angle 6.70 (9)°]. The nitrophenyl ring, on the other hand, is significantly twisted out of the plane of the these two rings [68.83 (4)° and 62.86 (4)°]. The nitro group is twisted by 12.1 (2)° out of the plane of the phenyl ring to which it is attached.

Related literature top

The title compound is a precursor of amine which is a useful curing agent of epoxy resins. For the properties and applications of epoxy resins, see: Boey & Yap (2001); Bonnaud et al. (2004); de Moris et al. (2007). For their inherent brittleness arising from cross-linking, see: Van de Grampel et al. (2005). For approaches for toughening epoxy resins, see: Agag & Takeichi (1999); Kagathera & Parsania (2001); Kagathera & Parsania (2001).

Experimental top

A 500 ml two neck round bottom flask was equipped with condenser and thermometer and was charged with (0.059 moles) biphenyl-4-ol, (0.059 moles) anhydrous potassium carbonate and (0.059 moles) 4-chloronitrobenzene in 180 ml of DMF. Reaction mixture was heated for 24 h at 120°C. The reaction was carried out in the inert atmosphere of nitrogen. Progress of reaction was measured by TLC [1:1, ethyl acetae, n-hexane]. After completion, the reaction mixture was poured into 600 ml of water to give yellow precipitates. These precipitates were collected by filtration and washed with water several times. Recrystallization of the residue in n-hexane afforded the title compound (86%) (m.p 142–144°C)

Refinement top

H atoms were located in a difference map, but geometrically positioned and refined using a riding model with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C)] and with C—H = 0.95Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Packing of the title compound with view onto the ac plane, hydrogen atoms are omitted for clarity.
4-(4-Nitrophenoxy)biphenyl top
Crystal data top
C18H13NO3F(000) = 608
Mr = 291.29Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16639 reflections
a = 9.6435 (7) Åθ = 2.2–25.8°
b = 5.8648 (3) ŵ = 0.10 mm1
c = 24.6884 (18) ÅT = 173 K
β = 95.704 (6)°Plate, colourless
V = 1389.39 (16) Å30.44 × 0.37 × 0.13 mm
Z = 4
Data collection top
STOE IPDS II two-circle-
diffractometer
2187 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
ω scansh = 1111
16020 measured reflectionsk = 76
2556 independent reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.2032P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2556 reflectionsΔρmax = 0.24 e Å3
200 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)
Crystal data top
C18H13NO3V = 1389.39 (16) Å3
Mr = 291.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6435 (7) ŵ = 0.10 mm1
b = 5.8648 (3) ÅT = 173 K
c = 24.6884 (18) Å0.44 × 0.37 × 0.13 mm
β = 95.704 (6)°
Data collection top
STOE IPDS II two-circle-
diffractometer
2187 reflections with I > 2σ(I)
16020 measured reflectionsRint = 0.052
2556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
2556 reflectionsΔρmin = 0.20 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24460 (14)1.3101 (2)0.49386 (5)0.0439 (3)
O10.11760 (13)1.3217 (2)0.48231 (5)0.0630 (4)
O20.32703 (14)1.4402 (2)0.47506 (5)0.0648 (4)
O30.44070 (9)0.60894 (15)0.63327 (4)0.0357 (3)
C10.29854 (14)1.1306 (2)0.53120 (5)0.0342 (3)
C20.43662 (14)1.1370 (2)0.55251 (5)0.0369 (3)
H20.49601.25690.54310.044*
C30.48706 (13)0.9659 (2)0.58781 (5)0.0335 (3)
H30.58160.96750.60300.040*
C40.39846 (12)0.7919 (2)0.60091 (5)0.0289 (3)
C50.26016 (13)0.7870 (3)0.57875 (5)0.0360 (3)
H50.20080.66610.58760.043*
C60.20939 (13)0.9577 (3)0.54400 (5)0.0379 (3)
H60.11480.95700.52900.045*
C110.55429 (12)0.6296 (2)0.67283 (5)0.0293 (3)
C120.65196 (14)0.4576 (2)0.67578 (6)0.0378 (3)
H120.64660.34080.64900.045*
C130.75837 (14)0.4557 (2)0.71807 (5)0.0369 (3)
H130.82490.33580.72000.044*
C140.76992 (12)0.6256 (2)0.75787 (5)0.0261 (3)
C150.66981 (13)0.7987 (2)0.75286 (5)0.0338 (3)
H150.67550.91820.77900.041*
C160.56253 (14)0.8018 (2)0.71109 (5)0.0358 (3)
H160.49550.92110.70880.043*
C210.88361 (12)0.6232 (2)0.80367 (5)0.0268 (3)
C220.97567 (14)0.4414 (2)0.81201 (6)0.0383 (3)
H220.96620.31430.78810.046*
C231.08153 (15)0.4416 (3)0.85470 (6)0.0418 (4)
H231.14320.31530.85940.050*
C241.09758 (13)0.6225 (2)0.89004 (5)0.0353 (3)
H241.16930.62180.91940.042*
C251.00812 (16)0.8051 (3)0.88227 (6)0.0470 (4)
H251.01830.93170.90630.056*
C260.90334 (16)0.8054 (3)0.83963 (6)0.0450 (4)
H260.84320.93370.83480.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0575 (8)0.0410 (7)0.0321 (6)0.0100 (6)0.0010 (5)0.0015 (5)
O10.0585 (8)0.0712 (9)0.0559 (7)0.0191 (6)0.0119 (6)0.0174 (6)
O20.0780 (8)0.0492 (7)0.0662 (8)0.0006 (6)0.0028 (6)0.0237 (6)
O30.0332 (5)0.0306 (5)0.0403 (5)0.0062 (4)0.0109 (4)0.0041 (4)
C10.0421 (7)0.0337 (7)0.0261 (6)0.0059 (6)0.0007 (5)0.0013 (5)
C20.0411 (7)0.0324 (7)0.0365 (7)0.0064 (6)0.0002 (6)0.0005 (5)
C30.0287 (6)0.0340 (7)0.0365 (7)0.0041 (5)0.0030 (5)0.0016 (5)
C40.0298 (6)0.0298 (7)0.0263 (6)0.0001 (5)0.0015 (5)0.0017 (5)
C50.0284 (6)0.0446 (8)0.0344 (6)0.0070 (5)0.0001 (5)0.0049 (6)
C60.0288 (6)0.0523 (9)0.0316 (6)0.0024 (6)0.0019 (5)0.0036 (6)
C110.0264 (6)0.0301 (7)0.0304 (6)0.0044 (5)0.0017 (5)0.0029 (5)
C120.0394 (7)0.0325 (7)0.0395 (7)0.0034 (6)0.0067 (6)0.0114 (6)
C130.0349 (7)0.0327 (7)0.0410 (7)0.0094 (5)0.0062 (6)0.0090 (6)
C140.0250 (6)0.0256 (6)0.0279 (6)0.0012 (5)0.0038 (5)0.0004 (4)
C150.0343 (7)0.0324 (7)0.0338 (6)0.0055 (5)0.0017 (5)0.0084 (5)
C160.0329 (7)0.0340 (7)0.0393 (7)0.0092 (5)0.0020 (5)0.0032 (5)
C210.0247 (6)0.0286 (6)0.0272 (6)0.0013 (5)0.0039 (5)0.0003 (5)
C220.0397 (7)0.0352 (8)0.0380 (7)0.0075 (6)0.0052 (6)0.0087 (6)
C230.0387 (7)0.0421 (8)0.0425 (7)0.0112 (6)0.0071 (6)0.0016 (6)
C240.0301 (6)0.0463 (8)0.0285 (6)0.0018 (6)0.0020 (5)0.0019 (5)
C250.0462 (8)0.0482 (9)0.0438 (8)0.0063 (7)0.0098 (6)0.0187 (7)
C260.0442 (8)0.0402 (8)0.0471 (8)0.0129 (6)0.0122 (6)0.0163 (6)
Geometric parameters (Å, º) top
N1—O21.2260 (17)C13—C141.3962 (17)
N1—O11.2315 (17)C13—H130.9500
N1—C11.4608 (17)C14—C151.3978 (17)
O3—C41.3751 (15)C14—C211.4948 (17)
O3—C111.3984 (15)C15—C161.3864 (18)
C1—C21.3828 (19)C15—H150.9500
C1—C61.386 (2)C16—H160.9500
C2—C31.3851 (19)C21—C221.3895 (18)
C2—H20.9500C21—C261.3902 (18)
C3—C41.3897 (18)C22—C231.3924 (19)
C3—H30.9500C22—H220.9500
C4—C51.3906 (17)C23—C241.373 (2)
C5—C61.376 (2)C23—H230.9500
C5—H50.9500C24—C251.376 (2)
C6—H60.9500C24—H240.9500
C11—C121.3769 (18)C25—C261.385 (2)
C11—C161.3798 (18)C25—H250.9500
C12—C131.3893 (18)C26—H260.9500
C12—H120.9500
O2—N1—O1123.04 (13)C12—C13—H13119.2
O2—N1—C1118.95 (13)C14—C13—H13119.2
O1—N1—C1118.00 (13)C13—C14—C15116.74 (11)
C4—O3—C11120.29 (9)C13—C14—C21121.79 (11)
C2—C1—C6121.93 (12)C15—C14—C21121.47 (11)
C2—C1—N1119.31 (13)C16—C15—C14122.23 (12)
C6—C1—N1118.77 (12)C16—C15—H15118.9
C1—C2—C3118.97 (12)C14—C15—H15118.9
C1—C2—H2120.5C11—C16—C15119.17 (12)
C3—C2—H2120.5C11—C16—H16120.4
C2—C3—C4119.52 (12)C15—C16—H16120.4
C2—C3—H3120.2C22—C21—C26116.75 (12)
C4—C3—H3120.2C22—C21—C14121.95 (11)
O3—C4—C3123.69 (11)C26—C21—C14121.29 (11)
O3—C4—C5115.44 (11)C21—C22—C23121.41 (12)
C3—C4—C5120.76 (12)C21—C22—H22119.3
C6—C5—C4119.87 (12)C23—C22—H22119.3
C6—C5—H5120.1C24—C23—C22120.63 (13)
C4—C5—H5120.1C24—C23—H23119.7
C5—C6—C1118.94 (12)C22—C23—H23119.7
C5—C6—H6120.5C23—C24—C25118.90 (12)
C1—C6—H6120.5C23—C24—H24120.5
C12—C11—C16120.49 (12)C25—C24—H24120.5
C12—C11—O3117.24 (11)C24—C25—C26120.44 (13)
C16—C11—O3121.95 (11)C24—C25—H25119.8
C11—C12—C13119.74 (12)C26—C25—H25119.8
C11—C12—H12120.1C25—C26—C21121.86 (13)
C13—C12—H12120.1C25—C26—H26119.1
C12—C13—C14121.62 (12)C21—C26—H26119.1
O2—N1—C1—C212.16 (19)C11—C12—C13—C140.5 (2)
O1—N1—C1—C2168.59 (13)C12—C13—C14—C150.5 (2)
O2—N1—C1—C6167.52 (13)C12—C13—C14—C21179.53 (12)
O1—N1—C1—C611.73 (19)C13—C14—C15—C160.9 (2)
C6—C1—C2—C30.2 (2)C21—C14—C15—C16179.06 (12)
N1—C1—C2—C3179.88 (11)C12—C11—C16—C150.5 (2)
C1—C2—C3—C40.17 (19)O3—C11—C16—C15172.89 (11)
C11—O3—C4—C327.36 (17)C14—C15—C16—C110.5 (2)
C11—O3—C4—C5156.29 (11)C13—C14—C21—C226.20 (19)
C2—C3—C4—O3176.54 (11)C15—C14—C21—C22173.79 (12)
C2—C3—C4—C50.38 (19)C13—C14—C21—C26172.90 (13)
O3—C4—C5—C6177.36 (12)C15—C14—C21—C267.11 (19)
C3—C4—C5—C60.9 (2)C26—C21—C22—C230.6 (2)
C4—C5—C6—C10.8 (2)C14—C21—C22—C23179.73 (12)
C2—C1—C6—C50.3 (2)C21—C22—C23—C240.2 (2)
N1—C1—C6—C5179.37 (12)C22—C23—C24—C250.6 (2)
C4—O3—C11—C12133.96 (13)C23—C24—C25—C260.3 (2)
C4—O3—C11—C1652.42 (16)C24—C25—C26—C210.5 (3)
C16—C11—C12—C131.0 (2)C22—C21—C26—C251.0 (2)
O3—C11—C12—C13172.73 (12)C14—C21—C26—C25179.89 (13)

Experimental details

Crystal data
Chemical formulaC18H13NO3
Mr291.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.6435 (7), 5.8648 (3), 24.6884 (18)
β (°) 95.704 (6)
V3)1389.39 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.37 × 0.13
Data collection
DiffractometerSTOE IPDS II two-circle-
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16020, 2556, 2187
Rint0.052
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.07
No. of reflections2556
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan, and the Institute for Inorganic Chemistry, University of Frankfurt, Germany, for providing laboratory and analytical facilities.

References

First citationAgag, T. & Takeichi, T. (1999). Polymer, 40, 6557–6563.  Web of Science CrossRef CAS Google Scholar
First citationBoey, F. Y. C. & Yap, B. H. (2001). Polym. Test. 20, 837–845.  Web of Science CrossRef CAS Google Scholar
First citationBonnaud, L., Pascault, J. P., Sautereau, H., Zhao, J. Q. & Jia, D. M. (2004). Eur. Polym. J. 40, 2637–3643.  Web of Science CrossRef CAS Google Scholar
First citationGrampel, D. R. van de, Ming, W., van Gennip, W. J. H., van der Velden, F., Laven, J., Niemantsverdriet, J. W. & van der Linde, R. (2005). Polymer, 46, 10531-10537.  Google Scholar
First citationKagathera, V. M. & Parsania, P. H. (2001). Polym. Test. 20, 713–716.  Google Scholar
First citationMoris, A. B. de, Pereira, A. B., Teixeira, J. P. & Cavaleiro, N. C. (2007). Int. J. Adhes. Adhes. 27, 679–686.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds