organic compounds
Pyrazino[2,3-b]indolizine-10-carbonitrile
aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland
*Correspondence e-mail: art@chem.univ.gda.pl
In the 11H6N4, neighbouring molecules are linked into inversion dimers through pairs of weak C—H⋯N hydrogen bonds, forming an R22(10) ring motif. The dimers forming this motif are further linked by π–π interactions. With respective average deviations from planarity of 0.004 (2) and 0.004 (1) Å, the pyrazino[2,3-β]indolizine and cyano fragment are oriented at 0.8 (1)° to each other. The mean planes of the pyrazino[2,3-b]indolizine skeleton either lie parallel or are inclined at an angle of 28.7 (2)° in the crystal.
of the title compound, CRelated literature
For applications of this class of compounds, see: Akiyama et al. (1978); Foks et al. (2005); Kaliszan et al. (1985); Kushner et al. (1952); Mussinan et al. (1973); Petrusewicz et al. (1993, 1995); Seitz et al. (2002). For the synthesis, see: Pilarski & Foks (1981 and 1982). For the analysis of intermolecular interactions, see: Spek (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen bonds, see: Steiner (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809008939/ww2144sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809008939/ww2144Isup2.hkl
Pyrazino[2,3-β]indolizine-10-carbonitrile was obtained by mixing 2,3-dichloropyrazine, 2-pyridylacetonitrile and potassium carbonate in DMSO. The mixture was stirred for 5 h at 333 K. After cooling the reaction mixture to room temperature, water was added. Then mixture was acidified with hydrochloric acid (Pilarski & Foks, 1981 and 1982). The orange-green precipitate was obtained. Single crystals suitable for X-ray analysis were grown in methanol solution (m. p. = 486 K).
All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. CgA and CgB denote the ring centroids. | |
Fig. 2. The arrangement of the molecules in the crystal structure viewed approximately along a axis. The C—H···N interactions are represented by dashed lines and the π–π interactions are represented by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) 1 - x, - y, - z; (ii) -1 + x, y, z.] |
C11H6N4 | F(000) = 400 |
Mr = 194.20 | Dx = 1.426 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6832 reflections |
a = 3.8515 (5) Å | θ = 3.0–25.0° |
b = 14.147 (2) Å | µ = 0.09 mm−1 |
c = 16.606 (3) Å | T = 295 K |
β = 91.260 (14)° | Needle, orange-green |
V = 904.6 (2) Å3 | 0.30 × 0.08 × 0.06 mm |
Z = 4 |
Oxford Diffraction Ruby CCD diffractometer | 1606 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1186 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.1° |
ω scans | h = −4→4 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −16→15 |
Tmin = 0.992, Tmax = 0.999 | l = −18→19 |
6832 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0745P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
1606 reflections | Δρmax = 0.18 e Å−3 |
137 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.017 (5) |
C11H6N4 | V = 904.6 (2) Å3 |
Mr = 194.20 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.8515 (5) Å | µ = 0.09 mm−1 |
b = 14.147 (2) Å | T = 295 K |
c = 16.606 (3) Å | 0.30 × 0.08 × 0.06 mm |
β = 91.260 (14)° |
Oxford Diffraction Ruby CCD diffractometer | 1606 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1186 reflections with I > 2σ(I) |
Tmin = 0.992, Tmax = 0.999 | Rint = 0.032 |
6832 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.18 e Å−3 |
1606 reflections | Δρmin = −0.15 e Å−3 |
137 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1906 (3) | 0.18749 (8) | 0.01142 (7) | 0.0395 (3) | |
C2 | 0.3590 (4) | 0.15549 (12) | −0.05644 (9) | 0.0463 (4) | |
H2 | 0.4296 | 0.0928 | −0.0597 | 0.056* | |
C3 | 0.4196 (4) | 0.21534 (13) | −0.11734 (10) | 0.0541 (5) | |
H3 | 0.5303 | 0.1943 | −0.1632 | 0.065* | |
C4 | 0.3135 (4) | 0.31070 (13) | −0.11094 (11) | 0.0554 (5) | |
H4 | 0.3574 | 0.3523 | −0.1529 | 0.066* | |
C5 | 0.1475 (4) | 0.34299 (12) | −0.04437 (10) | 0.0506 (4) | |
H5 | 0.0804 | 0.4060 | −0.0415 | 0.061* | |
C6 | 0.0772 (4) | 0.28097 (10) | 0.02016 (9) | 0.0412 (4) | |
C7 | −0.0876 (4) | 0.29055 (10) | 0.09485 (9) | 0.0431 (4) | |
C8 | −0.0708 (4) | 0.20124 (11) | 0.13408 (9) | 0.0410 (4) | |
N9 | −0.1882 (3) | 0.17236 (10) | 0.20656 (8) | 0.0500 (4) | |
C10 | −0.1199 (4) | 0.08189 (13) | 0.22182 (10) | 0.0538 (5) | |
H10 | −0.1906 | 0.0569 | 0.2706 | 0.065* | |
C11 | 0.0522 (4) | 0.02209 (12) | 0.16866 (10) | 0.0528 (4) | |
H11 | 0.0890 | −0.0403 | 0.1844 | 0.063* | |
N12 | 0.1684 (3) | 0.04892 (9) | 0.09592 (8) | 0.0482 (4) | |
C13 | 0.1002 (3) | 0.13879 (10) | 0.08115 (9) | 0.0387 (4) | |
C14 | −0.2351 (4) | 0.37523 (12) | 0.12502 (10) | 0.0528 (5) | |
N15 | −0.3567 (4) | 0.44383 (12) | 0.14836 (11) | 0.0782 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0429 (6) | 0.0342 (7) | 0.0413 (7) | 0.0010 (5) | −0.0001 (5) | −0.0047 (5) |
C2 | 0.0487 (8) | 0.0447 (9) | 0.0455 (9) | 0.0043 (7) | 0.0020 (7) | −0.0093 (7) |
C3 | 0.0561 (10) | 0.0600 (12) | 0.0466 (10) | 0.0024 (8) | 0.0074 (8) | −0.0039 (8) |
C4 | 0.0558 (9) | 0.0571 (11) | 0.0533 (11) | −0.0042 (8) | 0.0013 (8) | 0.0129 (8) |
C5 | 0.0533 (9) | 0.0398 (9) | 0.0586 (11) | −0.0007 (7) | −0.0023 (8) | 0.0044 (8) |
C6 | 0.0401 (7) | 0.0331 (8) | 0.0501 (10) | −0.0016 (6) | −0.0033 (7) | −0.0045 (7) |
C7 | 0.0463 (8) | 0.0351 (9) | 0.0479 (9) | 0.0010 (6) | 0.0007 (7) | −0.0075 (7) |
C8 | 0.0407 (8) | 0.0406 (9) | 0.0415 (9) | −0.0042 (6) | −0.0013 (6) | −0.0059 (7) |
N9 | 0.0535 (7) | 0.0499 (10) | 0.0467 (9) | −0.0028 (6) | 0.0035 (6) | −0.0017 (6) |
C10 | 0.0568 (9) | 0.0560 (12) | 0.0485 (10) | −0.0065 (8) | 0.0020 (8) | 0.0058 (8) |
C11 | 0.0607 (9) | 0.0430 (10) | 0.0543 (10) | −0.0034 (8) | −0.0049 (8) | 0.0086 (8) |
N12 | 0.0545 (7) | 0.0373 (8) | 0.0525 (8) | 0.0030 (6) | −0.0043 (6) | −0.0006 (6) |
C13 | 0.0407 (7) | 0.0339 (9) | 0.0413 (9) | −0.0012 (6) | −0.0026 (6) | −0.0032 (6) |
C14 | 0.0552 (9) | 0.0436 (11) | 0.0597 (11) | 0.0000 (8) | 0.0016 (8) | −0.0123 (8) |
N15 | 0.0841 (11) | 0.0517 (11) | 0.0992 (13) | 0.0092 (8) | 0.0080 (10) | −0.0274 (9) |
N1—C2 | 1.3883 (19) | C7—C14 | 1.422 (2) |
N1—C13 | 1.3980 (18) | C7—C8 | 1.422 (2) |
N1—C6 | 1.4014 (18) | C8—N9 | 1.3580 (19) |
C2—C3 | 1.343 (2) | C8—C13 | 1.419 (2) |
C2—H2 | 0.9300 | N9—C10 | 1.330 (2) |
C3—C4 | 1.414 (3) | C10—C11 | 1.400 (2) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.368 (2) | C11—N12 | 1.352 (2) |
C4—H4 | 0.9300 | C11—H11 | 0.9300 |
C5—C6 | 1.416 (2) | N12—C13 | 1.3201 (19) |
C5—H5 | 0.9300 | C14—N15 | 1.149 (2) |
C6—C7 | 1.412 (2) | ||
C2—N1—C13 | 129.87 (13) | C6—C7—C14 | 125.53 (14) |
C2—N1—C6 | 122.96 (13) | C6—C7—C8 | 107.47 (12) |
C13—N1—C6 | 107.18 (11) | C14—C7—C8 | 126.98 (15) |
C3—C2—N1 | 119.85 (15) | N9—C8—C13 | 122.01 (14) |
C3—C2—H2 | 120.1 | N9—C8—C7 | 131.34 (14) |
N1—C2—H2 | 120.1 | C13—C8—C7 | 106.65 (13) |
C2—C3—C4 | 119.29 (15) | C10—N9—C8 | 112.96 (13) |
C2—C3—H3 | 120.4 | N9—C10—C11 | 123.77 (15) |
C4—C3—H3 | 120.4 | N9—C10—H10 | 118.1 |
C5—C4—C3 | 121.36 (16) | C11—C10—H10 | 118.1 |
C5—C4—H4 | 119.3 | N12—C11—C10 | 124.36 (15) |
C3—C4—H4 | 119.3 | N12—C11—H11 | 117.8 |
C4—C5—C6 | 120.35 (16) | C10—C11—H11 | 117.8 |
C4—C5—H5 | 119.8 | C13—N12—C11 | 111.60 (13) |
C6—C5—H5 | 119.8 | N12—C13—N1 | 125.19 (13) |
N1—C6—C7 | 109.19 (12) | N12—C13—C8 | 125.30 (14) |
N1—C6—C5 | 116.18 (13) | N1—C13—C8 | 109.50 (13) |
C7—C6—C5 | 134.63 (14) | N15—C14—C7 | 179.0 (2) |
C13—N1—C2—C3 | 179.88 (14) | C6—C7—C8—C13 | −0.94 (16) |
C6—N1—C2—C3 | 0.1 (2) | C14—C7—C8—C13 | −179.67 (14) |
N1—C2—C3—C4 | 0.6 (2) | C13—C8—N9—C10 | 1.07 (19) |
C2—C3—C4—C5 | −0.6 (2) | C7—C8—N9—C10 | −179.86 (16) |
C3—C4—C5—C6 | −0.1 (2) | C8—N9—C10—C11 | −0.5 (2) |
C2—N1—C6—C7 | 179.16 (12) | N9—C10—C11—N12 | −0.1 (3) |
C13—N1—C6—C7 | −0.67 (14) | C10—C11—N12—C13 | 0.2 (2) |
C2—N1—C6—C5 | −0.79 (19) | C11—N12—C13—N1 | 179.34 (12) |
C13—N1—C6—C5 | 179.38 (12) | C11—N12—C13—C8 | 0.4 (2) |
C4—C5—C6—N1 | 0.8 (2) | C2—N1—C13—N12 | 1.2 (2) |
C4—C5—C6—C7 | −179.16 (15) | C6—N1—C13—N12 | −178.99 (13) |
N1—C6—C7—C14 | 179.76 (14) | C2—N1—C13—C8 | −179.75 (12) |
C5—C6—C7—C14 | −0.3 (3) | C6—N1—C13—C8 | 0.07 (14) |
N1—C6—C7—C8 | 1.01 (15) | N9—C8—C13—N12 | −1.1 (2) |
C5—C6—C7—C8 | −179.06 (15) | C7—C8—C13—N12 | 179.60 (14) |
C6—C7—C8—N9 | 179.88 (14) | N9—C8—C13—N1 | 179.82 (11) |
C14—C7—C8—N9 | 1.2 (3) | C7—C8—C13—N1 | 0.55 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N12i | 0.93 | 2.61 | 3.487 (2) | 157 |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C11H6N4 |
Mr | 194.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 3.8515 (5), 14.147 (2), 16.606 (3) |
β (°) | 91.260 (14) |
V (Å3) | 904.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.992, 0.999 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6832, 1606, 1186 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.111, 1.02 |
No. of reflections | 1606 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.15 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N12i | 0.93 | 2.61 | 3.487 (2) | 157 |
Symmetry code: (i) −x+1, −y, −z. |
CgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance | Offset |
A | Bii | 3.608 (1) | 0.6 | 3.358 (1) | 1.320 (1) |
Symmetry codes: (ii) -1 + x, y, z. Notes: CgA and CgB are the centroids of the N1/C6–C8/C13 and N1/C2–C6 rings, respectively. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. |
Acknowledgements
This scientific work has been supported by `Funds for Science in Year 2009' as a research project (DS/8410–4–0139–9).
References
Akiyama, T., Enomoto, Y. & Shibamoto, T. (1978). J. Agric. Food Chem. 26, 1176–1179. CrossRef CAS Web of Science Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foks, H., Pancechowska-Ksepko, D., Kédzia, A., Zwolska, Z., Janowiec, M. & Augustynowicz-Kopeć, E. (2005). Farmaco, 60, 513–517. CrossRef PubMed CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kaliszan, R., Pilarski, B., Ośmiałowski, K., Strzałkowska-Grad, H. & Hać, E. (1985). Pharm. Weekbl Sci. 7, 141–145. CrossRef CAS PubMed Web of Science Google Scholar
Kushner, S., Dalalian, H., Sanjurjo, J. L., Bach, F. L. Jr, Safir, S. R., Smith, V. K. Jr & Williams, J. H. (1952). J. Am. Chem. Soc. 74, 3617–3621. CrossRef CAS Web of Science Google Scholar
Mussinan, C. J., Wilson, R. A. & Katz, I. (1973). J. Agric. Food Chem. 21, 871–872. CrossRef CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Petrusewicz, J., Gami-Yilinkou, R., Kaliszan, R., Pilarski, B. & Foks, H. (1993). Gen. Pharmacol. 24, 17–22. CrossRef CAS PubMed Web of Science Google Scholar
Petrusewicz, J., Turowski, M., Foks, H., Pilarski, B. & Kaliszan, R. (1995). Life Sci. 56, 667–677. CrossRef CAS PubMed Web of Science Google Scholar
Pilarski, B. & Foks, H. (1981). Polish Patent No. P-232409. Google Scholar
Pilarski, B. & Foks, H. (1982). Polish Patent No. P-234716. Google Scholar
Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1999). Chem. Commun. pp. 313–314. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazines play an important role as building block of many pharmaceutical products. They occur in many compounds with pharmaceutical and flavoring applications. Many of them have been found in nature. Pyrazines are responsible for flavour in foodstuffs, e.g. cheese, tea, coffee or cooked meat. (Akiyama et al., 1978; Mussinan et al., 1973). Biological activities of pyrazine derivatives are widely discussed in plentiful scientific publications: antibacterial (Foks et al., 2005), anti-inflammatory (Petrusewicz et al., 1995), chemotherapeutic agent (Kushner et al., 1952), antimycobacterial (Seitz et al., 2002) and antithrombotic (Petrusewicz et al., 1993). Such pharmacological activities in group of pyrazine are possibly the result of their structures. It is known that the pyrazine-acetonitrile shows antiplatelet and analgestic activity (Kaliszan et al., 1985). X-Ray structure of pyrazino[2,3-β]indolizine-10-carbonitrile is subject of the present paper.
In the Cambridge Structural Database (CSD; Version 5.27; Allen, 2002), there are no crystal structures containing the pyrazino[2,3-β]indolizine skeleton.
With average deviations from planarity of 0.004 (2) and 0.004 (1)Å respectively, the pyrazino[2,3-β]indolizine and cyano fragments are oriented at 0.8 (1)° to each other. The mean planes of the pyrazino[2,3-β]indolizine skeleton lie either parallel to or are inclined at an angle of 28.7 (2)° in the lattice.
In the crystal structure, neighbouring molecules are linked through weak C–H···N hydrogen bond forming R22(10) ring motif (Table 1 and Fig. 2). Molecules which forming this motif are linked by π–π interactions between the central ring A and the lateral rings B (Table 2 and Fig. 2). All the interactions demonstrated were found by PLATON (Spek, 2009).