organic compounds
9-Chloro-2,4-dimethoxyacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the molecular structure of the title compound, C15H13ClNO2+·CF3SO3−, the methoxy groups are nearly coplanar with the acridine ring system, making dihedral angles of 0.4 (2) and 5.1 (2)°. Multidirectional π–π contacts between acridine units are observed in the N—H⋯O and C—H⋯O hydrogen bonds link cations and anions, forming a layer structure.
Related literature
For general background, see: Acheson (1973); Demeunynck et al. (2001); Wróblewska et al. (2004); Zomer & Jacquemijns (2001). For related structures, see: Achari & Neidle (1977); Neidle (1982); Ning et al. (1976); Ojida et al. (2006); Rimmer et al. (2000); Toma et al. (1993). For intermolecular interactions, see: Aakeröy et al. (1992); Bianchi et al. (2004); Hunter et al. (2001); Steiner (1999). For the synthesis, see: Acheson (1973); Sato (1996). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809008551/xu2477sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809008551/xu2477Isup2.hkl
9-Chloro-2,4-dimethoxyacridine was prepared by heating 2-[(2,4-dimethoxyphenyl)amino]benzoic acid, obtained as described elsewhere (Acheson, 1973), with a sevenfold molar excess of POCl3 (400 K, 3 h). The excess POCl3 was subsequently removed under reduced pressure. The residue was dispersed in CHCl3, stirred in the presence of a mixture of ice and aqueous ammonia, separated by filtration and dried. The crude product was purified chromatographically (neutral Al2O3, CHCl3/toluene, 1/1 v/v, Rf=0.29). The 9-chloro-2,4-dimethoxyacridine was dissolved in CH2Cl2, then treated with a fivefold molal excess of methyl trifluoromethanesulfonate dissolved in the same solvent (under an Ar atmosphere at room temperature for 3 h) (Sato, 1996). The crude salt was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether (yield: 71%). Purple crystals suitable for X-ray investigations were grown from 2-propanol solution (m.p. 493–496 K).
H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. The C5–H5···O23, N10–H10···O23 and C18–H18A···O22 hydrogen bonds are represented by dashed lines. Cg1, Cg2 and Cg3 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure, viewed along the a axis. The N–H···O and C–H···O hydrogen bonds are represented by dashed lines, the π-π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x + 1, y, z + 1; (ii) x, -y + 3/2, z + 1/2; (iii) x, -y + 3/2, z - 1/2.] | |
Fig. 3. Ion pair stacks in the crystal structure, viewed along the c axis. The N–H···O and C–H···O interactions are represented by dashed lines. H atoms not involved in interactions have been omitted. |
C15H13ClNO2+·CF3SO3− | F(000) = 864 |
Mr = 423.79 | Dx = 1.625 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5776 reflections |
a = 11.0502 (9) Å | θ = 3.0–29.2° |
b = 23.110 (2) Å | µ = 0.40 mm−1 |
c = 7.1435 (8) Å | T = 295 K |
β = 108.214 (11)° | Plate, purple |
V = 1732.8 (3) Å3 | 0.60 × 0.20 × 0.10 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3072 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1932 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.1° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −25→27 |
Tmin = 0.782, Tmax = 0.959 | l = −8→8 |
12548 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1062P)2P] where P = (Fo2 + 2Fc2)/3 |
3072 reflections | (Δ/σ)max < 0.001 |
246 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C15H13ClNO2+·CF3SO3− | V = 1732.8 (3) Å3 |
Mr = 423.79 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.0502 (9) Å | µ = 0.40 mm−1 |
b = 23.110 (2) Å | T = 295 K |
c = 7.1435 (8) Å | 0.60 × 0.20 × 0.10 mm |
β = 108.214 (11)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3072 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1932 reflections with I > 2σ(I) |
Tmin = 0.782, Tmax = 0.959 | Rint = 0.063 |
12548 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.41 e Å−3 |
3072 reflections | Δρmin = −0.28 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1372 (3) | 0.84277 (15) | 0.6837 (5) | 0.0588 (9) | |
H1 | 1.2152 | 0.8604 | 0.7447 | 0.071* | |
C2 | 1.0316 (3) | 0.87560 (16) | 0.6029 (5) | 0.0630 (9) | |
C3 | 0.9120 (3) | 0.85005 (15) | 0.5039 (5) | 0.0606 (9) | |
H3 | 0.8414 | 0.8734 | 0.4478 | 0.073* | |
C4 | 0.9004 (3) | 0.79165 (14) | 0.4907 (5) | 0.0539 (8) | |
C5 | 1.0717 (4) | 0.60054 (16) | 0.6391 (5) | 0.0672 (9) | |
H5 | 0.9905 | 0.5857 | 0.5802 | 0.081* | |
C6 | 1.1712 (4) | 0.56449 (18) | 0.7170 (6) | 0.0774 (11) | |
H6 | 1.1578 | 0.5247 | 0.7103 | 0.093* | |
C7 | 1.2939 (4) | 0.5859 (2) | 0.8075 (6) | 0.0824 (12) | |
H7 | 1.3608 | 0.5603 | 0.8595 | 0.099* | |
C8 | 1.3169 (4) | 0.64432 (19) | 0.8204 (6) | 0.0740 (10) | |
H8 | 1.3990 | 0.6579 | 0.8812 | 0.089* | |
C9 | 1.2292 (3) | 0.74378 (17) | 0.7518 (5) | 0.0586 (9) | |
N10 | 0.9955 (2) | 0.69822 (11) | 0.5708 (4) | 0.0525 (7) | |
H10 | 0.9213 | 0.6840 | 0.5128 | 0.063* | |
C11 | 1.1281 (3) | 0.78210 (15) | 0.6748 (4) | 0.0532 (8) | |
C12 | 1.0075 (3) | 0.75623 (14) | 0.5787 (4) | 0.0507 (8) | |
C13 | 1.2163 (3) | 0.68400 (16) | 0.7418 (5) | 0.0606 (9) | |
C14 | 1.0924 (3) | 0.66091 (15) | 0.6481 (4) | 0.0552 (8) | |
O15 | 1.0275 (2) | 0.93401 (11) | 0.6023 (4) | 0.0789 (8) | |
C16 | 1.1437 (4) | 0.96502 (17) | 0.6957 (6) | 0.0822 (11) | |
H16A | 1.1261 | 1.0057 | 0.6933 | 0.123* | |
H16B | 1.2038 | 0.9577 | 0.6263 | 0.123* | |
H16C | 1.1787 | 0.9523 | 0.8298 | 0.123* | |
O17 | 0.7946 (2) | 0.76076 (10) | 0.3978 (4) | 0.0661 (7) | |
C18 | 0.6815 (3) | 0.79154 (16) | 0.2905 (6) | 0.0708 (10) | |
H18A | 0.6146 | 0.7644 | 0.2313 | 0.106* | |
H18B | 0.6985 | 0.8145 | 0.1894 | 0.106* | |
H18C | 0.6557 | 0.8164 | 0.3789 | 0.106* | |
Cl19 | 1.37790 (8) | 0.77318 (5) | 0.86037 (16) | 0.0835 (4) | |
S20 | 0.67506 (9) | 0.60826 (4) | 0.27655 (15) | 0.0686 (4) | |
O21 | 0.7046 (4) | 0.56795 (15) | 0.1495 (6) | 0.1301 (14) | |
O22 | 0.5948 (3) | 0.65462 (13) | 0.1825 (5) | 0.1074 (11) | |
O23 | 0.7793 (2) | 0.62580 (14) | 0.4408 (5) | 0.0967 (9) | |
C24 | 0.5785 (4) | 0.56702 (17) | 0.3904 (6) | 0.0738 (10) | |
F25 | 0.6355 (3) | 0.52276 (13) | 0.4837 (5) | 0.1314 (12) | |
F26 | 0.5357 (4) | 0.59810 (14) | 0.5057 (6) | 0.1486 (14) | |
F27 | 0.4759 (3) | 0.54695 (15) | 0.2592 (5) | 0.1493 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.054 (2) | 0.065 (2) | 0.0553 (19) | −0.0088 (16) | 0.0140 (17) | −0.0015 (16) |
C2 | 0.063 (2) | 0.063 (2) | 0.065 (2) | −0.0052 (18) | 0.0233 (19) | 0.0038 (17) |
C3 | 0.052 (2) | 0.060 (2) | 0.069 (2) | 0.0021 (16) | 0.0174 (17) | 0.0038 (16) |
C4 | 0.0440 (19) | 0.060 (2) | 0.0566 (19) | 0.0002 (15) | 0.0145 (16) | 0.0040 (15) |
C5 | 0.063 (2) | 0.068 (2) | 0.066 (2) | 0.0039 (18) | 0.0139 (18) | 0.0018 (18) |
C6 | 0.085 (3) | 0.068 (2) | 0.075 (2) | 0.021 (2) | 0.019 (2) | 0.004 (2) |
C7 | 0.069 (3) | 0.091 (3) | 0.078 (3) | 0.027 (2) | 0.010 (2) | 0.001 (2) |
C8 | 0.054 (2) | 0.092 (3) | 0.068 (2) | 0.016 (2) | 0.0068 (18) | 0.002 (2) |
C9 | 0.0459 (19) | 0.079 (2) | 0.0499 (19) | −0.0051 (17) | 0.0143 (16) | −0.0011 (16) |
N10 | 0.0432 (15) | 0.0611 (17) | 0.0512 (15) | −0.0001 (12) | 0.0117 (12) | 0.0015 (12) |
C11 | 0.0461 (19) | 0.070 (2) | 0.0451 (17) | 0.0013 (16) | 0.0166 (15) | 0.0014 (15) |
C12 | 0.048 (2) | 0.061 (2) | 0.0460 (17) | 0.0001 (15) | 0.0194 (15) | −0.0001 (14) |
C13 | 0.047 (2) | 0.083 (3) | 0.0505 (19) | 0.0091 (17) | 0.0132 (16) | 0.0031 (17) |
C14 | 0.052 (2) | 0.065 (2) | 0.0497 (18) | 0.0068 (16) | 0.0174 (16) | 0.0027 (16) |
O15 | 0.0707 (17) | 0.0567 (15) | 0.1022 (19) | −0.0073 (13) | 0.0168 (15) | −0.0006 (13) |
C16 | 0.082 (3) | 0.067 (2) | 0.087 (3) | −0.022 (2) | 0.011 (2) | −0.002 (2) |
O17 | 0.0444 (14) | 0.0601 (14) | 0.0823 (17) | −0.0032 (11) | 0.0030 (12) | 0.0067 (12) |
C18 | 0.045 (2) | 0.071 (2) | 0.086 (3) | 0.0088 (17) | 0.0050 (19) | 0.0042 (19) |
Cl19 | 0.0457 (6) | 0.1037 (8) | 0.0908 (7) | −0.0074 (5) | 0.0067 (5) | −0.0076 (6) |
S20 | 0.0630 (6) | 0.0553 (6) | 0.0846 (7) | −0.0041 (4) | 0.0190 (5) | 0.0067 (5) |
O21 | 0.186 (4) | 0.090 (2) | 0.156 (3) | −0.022 (2) | 0.114 (3) | −0.022 (2) |
O22 | 0.082 (2) | 0.0794 (19) | 0.138 (3) | −0.0040 (16) | 0.0005 (19) | 0.0429 (18) |
O23 | 0.0595 (16) | 0.099 (2) | 0.115 (2) | −0.0209 (16) | 0.0038 (16) | 0.0111 (18) |
C24 | 0.063 (2) | 0.066 (2) | 0.089 (3) | −0.001 (2) | 0.021 (2) | 0.005 (2) |
F25 | 0.112 (2) | 0.109 (2) | 0.178 (3) | 0.0179 (17) | 0.052 (2) | 0.080 (2) |
F26 | 0.165 (3) | 0.122 (2) | 0.210 (4) | −0.025 (2) | 0.132 (3) | −0.023 (2) |
F27 | 0.111 (2) | 0.174 (3) | 0.136 (3) | −0.081 (2) | −0.001 (2) | 0.033 (2) |
C1—C2 | 1.360 (5) | N10—C12 | 1.346 (4) |
C1—C11 | 1.405 (5) | N10—C14 | 1.351 (4) |
C1—H1 | 0.9300 | N10—H10 | 0.8600 |
C2—O15 | 1.351 (4) | C11—C12 | 1.426 (4) |
C2—C3 | 1.418 (5) | C13—C14 | 1.427 (5) |
C3—C4 | 1.356 (5) | O15—C16 | 1.439 (4) |
C3—H3 | 0.9300 | C16—H16A | 0.9600 |
C4—O17 | 1.354 (4) | C16—H16B | 0.9600 |
C4—C12 | 1.414 (4) | C16—H16C | 0.9600 |
C5—C6 | 1.353 (5) | O17—C18 | 1.434 (4) |
C5—C14 | 1.412 (5) | C18—H18A | 0.9600 |
C5—H5 | 0.9300 | C18—H18B | 0.9600 |
C6—C7 | 1.398 (6) | C18—H18C | 0.9600 |
C6—H6 | 0.9300 | S20—O21 | 1.408 (3) |
C7—C8 | 1.370 (6) | S20—O22 | 1.419 (3) |
C7—H7 | 0.9300 | S20—O23 | 1.422 (3) |
C8—C13 | 1.415 (5) | S20—C24 | 1.803 (4) |
C8—H8 | 0.9300 | C24—F25 | 1.275 (4) |
C9—C13 | 1.388 (5) | C24—F26 | 1.289 (4) |
C9—C11 | 1.396 (5) | C24—F27 | 1.310 (5) |
C9—Cl19 | 1.723 (3) | ||
C2—C1—C11 | 119.9 (3) | N10—C12—C11 | 120.2 (3) |
C2—C1—H1 | 120.1 | C4—C12—C11 | 119.8 (3) |
C11—C1—H1 | 120.1 | C9—C13—C8 | 124.7 (3) |
O15—C2—C1 | 125.6 (3) | C9—C13—C14 | 117.7 (3) |
O15—C2—C3 | 112.9 (3) | C8—C13—C14 | 117.6 (4) |
C1—C2—C3 | 121.4 (3) | N10—C14—C5 | 121.1 (3) |
C4—C3—C2 | 120.1 (3) | N10—C14—C13 | 118.3 (3) |
C4—C3—H3 | 119.9 | C5—C14—C13 | 120.6 (3) |
C2—C3—H3 | 119.9 | C2—O15—C16 | 118.2 (3) |
O17—C4—C3 | 127.4 (3) | O15—C16—H16A | 109.5 |
O17—C4—C12 | 112.8 (3) | O15—C16—H16B | 109.5 |
C3—C4—C12 | 119.9 (3) | H16A—C16—H16B | 109.5 |
C6—C5—C14 | 119.4 (4) | O15—C16—H16C | 109.5 |
C6—C5—H5 | 120.3 | H16A—C16—H16C | 109.5 |
C14—C5—H5 | 120.3 | H16B—C16—H16C | 109.5 |
C5—C6—C7 | 121.2 (4) | C4—O17—C18 | 118.4 (3) |
C5—C6—H6 | 119.4 | O17—C18—H18A | 109.5 |
C7—C6—H6 | 119.4 | O17—C18—H18B | 109.5 |
C8—C7—C6 | 120.9 (4) | H18A—C18—H18B | 109.5 |
C8—C7—H7 | 119.6 | O17—C18—H18C | 109.5 |
C6—C7—H7 | 119.6 | H18A—C18—H18C | 109.5 |
C7—C8—C13 | 120.4 (4) | H18B—C18—H18C | 109.5 |
C7—C8—H8 | 119.8 | O21—S20—O22 | 115.5 (2) |
C13—C8—H8 | 119.8 | O21—S20—O23 | 115.4 (2) |
C13—C9—C11 | 123.7 (3) | O22—S20—O23 | 113.59 (19) |
C13—C9—Cl19 | 118.9 (3) | O21—S20—C24 | 103.3 (2) |
C11—C9—Cl19 | 117.4 (3) | O22—S20—C24 | 104.03 (19) |
C12—N10—C14 | 124.3 (3) | O23—S20—C24 | 102.66 (19) |
C12—N10—H10 | 117.9 | F25—C24—F26 | 109.4 (4) |
C14—N10—H10 | 117.9 | F25—C24—F27 | 105.4 (4) |
C9—C11—C1 | 125.3 (3) | F26—C24—F27 | 104.2 (4) |
C9—C11—C12 | 115.8 (3) | F25—C24—S20 | 113.3 (3) |
C1—C11—C12 | 118.8 (3) | F26—C24—S20 | 112.4 (3) |
N10—C12—C4 | 120.0 (3) | F27—C24—S20 | 111.5 (3) |
C11—C1—C2—O15 | 179.7 (3) | Cl19—C9—C13—C8 | 2.0 (5) |
C11—C1—C2—C3 | −1.8 (5) | C11—C9—C13—C14 | −0.3 (5) |
O15—C2—C3—C4 | 179.7 (3) | Cl19—C9—C13—C14 | −179.0 (2) |
C1—C2—C3—C4 | 1.1 (5) | C7—C8—C13—C9 | 178.3 (3) |
C2—C3—C4—O17 | −178.2 (3) | C7—C8—C13—C14 | −0.7 (5) |
C2—C3—C4—C12 | 1.0 (5) | C12—N10—C14—C5 | 178.1 (3) |
C14—C5—C6—C7 | 0.5 (6) | C12—N10—C14—C13 | −1.1 (4) |
C5—C6—C7—C8 | 0.2 (6) | C6—C5—C14—N10 | 179.6 (3) |
C6—C7—C8—C13 | −0.1 (6) | C6—C5—C14—C13 | −1.2 (5) |
C13—C9—C11—C1 | 179.4 (3) | C9—C13—C14—N10 | 1.5 (4) |
Cl19—C9—C11—C1 | −2.0 (4) | C8—C13—C14—N10 | −179.5 (3) |
C13—C9—C11—C12 | −1.2 (4) | C9—C13—C14—C5 | −177.7 (3) |
Cl19—C9—C11—C12 | 177.4 (2) | C8—C13—C14—C5 | 1.3 (5) |
C2—C1—C11—C9 | 180.0 (3) | C1—C2—O15—C16 | −0.5 (5) |
C2—C1—C11—C12 | 0.6 (5) | C3—C2—O15—C16 | −179.0 (3) |
C14—N10—C12—C4 | 179.1 (3) | C3—C4—O17—C18 | 3.6 (5) |
C14—N10—C12—C11 | −0.6 (4) | C12—C4—O17—C18 | −175.7 (3) |
O17—C4—C12—N10 | −2.6 (4) | O21—S20—C24—F25 | 59.0 (4) |
C3—C4—C12—N10 | 178.1 (3) | O22—S20—C24—F25 | −180.0 (3) |
O17—C4—C12—C11 | 177.1 (3) | O23—S20—C24—F25 | −61.4 (4) |
C3—C4—C12—C11 | −2.2 (4) | O21—S20—C24—F26 | −176.3 (4) |
C9—C11—C12—N10 | 1.7 (4) | O22—S20—C24—F26 | −55.3 (4) |
C1—C11—C12—N10 | −178.9 (3) | O23—S20—C24—F26 | 63.3 (4) |
C9—C11—C12—C4 | −178.0 (3) | O21—S20—C24—F27 | −59.7 (4) |
C1—C11—C12—C4 | 1.4 (4) | O22—S20—C24—F27 | 61.3 (4) |
C11—C9—C13—C8 | −179.3 (3) | O23—S20—C24—F27 | 179.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10···O23 | 0.86 | 2.01 | 2.826 (4) | 159 |
C5—H5···O23 | 0.93 | 2.42 | 3.151 (5) | 136 |
C8—H8···O22i | 0.93 | 2.53 | 3.348 (6) | 147 |
C18—H18A···O22 | 0.96 | 2.56 | 3.326 (5) | 137 |
C18—H18C···O22ii | 0.96 | 2.55 | 3.462 (5) | 158 |
Symmetry codes: (i) x+1, y, z+1; (ii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H13ClNO2+·CF3SO3− |
Mr | 423.79 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 11.0502 (9), 23.110 (2), 7.1435 (8) |
β (°) | 108.214 (11) |
V (Å3) | 1732.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.60 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.782, 0.959 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12548, 3072, 1932 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.179, 1.06 |
No. of reflections | 3072 |
No. of parameters | 246 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10···O23 | 0.86 | 2.01 | 2.826 (4) | 159 |
C5—H5···O23 | 0.93 | 2.42 | 3.151 (5) | 136 |
C8—H8···O22i | 0.93 | 2.53 | 3.348 (6) | 147 |
C18—H18A···O22 | 0.96 | 2.56 | 3.326 (5) | 137 |
C18—H18C···O22ii | 0.96 | 2.55 | 3.462 (5) | 158 |
Symmetry codes: (i) x+1, y, z+1; (ii) x, −y+3/2, z+1/2. |
CgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance |
1 | 1iii | 3.817 (2) | 0.33 | 3.506 (2) |
1 | 1ii | 3.817 (2) | 0.33 | 3.499 (2) |
1 | 2iii | 3.984 (2) | 1.19 | 3.484 (2) |
1 | 2ii | 3.616 (2) | 1.19 | 3.493 (2) |
2 | 3iii | 3.919 (2) | 1.95 | 3.490 (2) |
3 | 2ii | 3.919 (2) | 1.95 | 3.509 (2) |
Symmetry codes: (ii) x, -y+3/2, z+1/2; (iii) x, -y+3/2, z-1/2. Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings. The interplanar distance is the perpendicular distance of CgI from ring J. |
Acknowledgements
The financing of this work from State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32, of the Polish Ministry of Research and Higher Education for the period 2007–2010) is acknowledged. BZ is grateful for a fellowship from the European Social Fund, the Polish State Budget and the Budget of the Province of Pomerania within the framework of the "Priority VIII Human Capital Operational Programme, action 8.2, subaction 8.2.2 `Regional Innovation Strategy'", of the `InnoDoktorant' project of the Province of Pomerania - fellowships for PhD students, 1st edition.
References
Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65. Google Scholar
Achari, A. & Neidle, S. (1977). Acta Cryst. B33, 3269–3270. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Acheson, R. M. (1973). Acridines, 2nd ed. New York: Interscience. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Demeunynck, M., Charmantray, F. & Martelli, A. (2001). Curr. Pharm. Des. 7, 1703–1724. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Neidle, S. (1982). Acta Cryst. B38, 159–162. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ning, R. Y., Madan, P. B., Blount, J. F. & Frayer, R. I. (1976). J. Org. Chem. 41, 3406–3409. CSD CrossRef CAS Web of Science Google Scholar
Ojida, A., Miyahara, Y., Wongkongkapet, J., Tamaru, S., Sada, K. & Hamachi, I. (2006). Chem. Asia. J. 1, 555–563. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rimmer, E. L., Bailey, R. D., Hanks, T. W. & Pennington, W. T. (2000). Chem. Eur. J. 6, 4071–4081. CrossRef PubMed CAS Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1999). Chem. Commun. pp. 313–314. Web of Science CrossRef Google Scholar
Toma, P. H., Nguyen, D. N. & Byrn, S. R. (1993). Acta Cryst. C49, 914–916. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem. 69, 1607–1614. Web of Science CrossRef PubMed CAS Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acridinium cations containing various substituents at position 9 and alkyl-substituted at the endocyclic N atom (position 10) undergo oxidation by H2O2 or other peroxides in alkaline media, which leads to the formation of electronically excited 10-alkyl-9-acridinones capable of emitting light with a quantum yield of several percent (Zomer & Jacquemijns, 2001; Wróblewska et al., 2004). This chemiluminescence is affected by the features of the substituent at position 9 and by the constitution of the acridine fragment. In the search for derivatives that could exhibit an enhanced chemiluminogenic ability we turned our attention to compounds in which the C atom at position 9 is bound to a Cl atom. One of the compounds synthesized was 9-chloro-2,4-dimethoxyacridinium trifluoromethanesulfonate. This compound was obtained by the reaction of 9-chloro-2,4-dimethoxyacridine with methyl trifluoromethanesulfonate, which usually leads to quarternarization of the endocyclic N atom (Sato, 1996). Since this did not happen, it is possible that traces of water caused the transformation of methyl trifluoromethanesulfonate to trifluoromethanesulfonic acid and methanol, and the reaction of the former entity with 9-chloro-2,4-dimethoxyacridine to yield 9-chloro-2,4-dimethoxyacridinium trifluoromethanesulfonate. The cation of the title compound has a protonated endocyclic N-atom, which makes its reaction with oxidants possible. On the other hand, substitution in the acridine moiety by two methoxy groups should cause a red shift of the chemiluminescence emission, advantageous in analytical applications. 9-Chloroacridines have been precursors of numerous 9-substitued acridine derivatives (Acheson, 1973; Wróblewska et al., 2004), including drugs (Acheson, 1973; Demeunynck et al., 2001). This paper presents the crystal structure of the title compound.
The acridine units, with an average deviation from planarity of 0.025 (5) Å, are parallel in the crystal lattice. In the cation of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the 9-chloroacridine skeleton are similar to those in 9-chloroacridine itself (Achari & Neidle, 1977), a 9-chloroacridine derivative (Neidle, 1982), a 9-chloroacridine iodine complex (Rimmer et al., 2000), two solvates of 9-chloroacridine derivatives (Toma et al., 1993; Ojida et al., 2006) and the salt-type compound containing the 9-chloroacridinium cation (Ning et al., 1976). The crystal structures of these six compounds were found in the Cambridge Structural Database (Version 5.29; Allen, 2002). The C(9)–Cl, N(10)–C(12) and N(10)–C(14) bond lengths (in Å) in them vary from 1.719 to 1.748, from 1.332 to 1.375 and from 1.349 to 1.383, respectively. The corresponding values for the compound investigated (1.723, 1.346 and 1.351) thus fall well within the ranges found for other 9-chloroacridines.
In the crystal structure, N–H···O (Aakeröy et. al., 1992) and C–H···O (Steiner, 1999; Bianchi et al., 2004) hydrogen bonds link cations and anions in ion pairs (Table 1, Fig. 1). Inversely oriented ion pairs form stacks via π-π contacts of an attractive nature (Hunter et al., 2001), involving the central ring (Cg1) and the aromatic rings (Cg2 and Cg3) (Table 2), as well as C–H···O interactions between adjacent ions (Fig. 2). Stacks arranged in parallel are linked through intermolecular C–H···O interactions (Figs 2 and 3) to form layers (Fig. 3). The crystal structure is stabilized by short-range non-specific dispersive interactions between inversely oriented layers (Fig. 3) as well as by long-range electrostatic interactions between ions.