Related literature
For general background, see: Hall (2005
); Kelly & Fuchs (1993
).
Experimental
Crystal data
C9H14BNO4 Mr = 211.02 Orthorhombic, P b c a a = 13.014 (3) Å b = 9.940 (2) Å c = 17.417 (4) Å V = 2252.9 (9) Å3 Z = 8 Mo Kα radiation μ = 0.10 mm−1 T = 293 K 0.25 × 0.12 × 0.10 mm
|
Data collection
Bruker SMART 1000 CCD area-detector diffractometer Absorption correction: none 9542 measured reflections 2213 independent reflections 1208 reflections with I > 2σ(I) Rint = 0.065
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H3A⋯O2 | 0.87 (2) | 1.73 (2) | 2.5819 (18) | 164.7 (18) | O4—H4⋯O3i | 0.89 (3) | 1.88 (3) | 2.769 (3) | 173 (3) | Symmetry code: (i) -x+2, -y+1, -z+1. | |
Data collection: SMART (Bruker, 2001
); cell refinement: SAINT (Bruker, 2001
); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008
); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
All chemical reagents are commercial and used as received. Under -78°C and argon atmosphere, lithium diisopropylamide (1.0 M in THF, 5.0 ml, 5.0 mmol) was added dropwise to a solution of tert-butyl 1H-pyrrole-1-carboxylate (835 mg, 5.0 mmol) in dry THF (15 ml), and the solution was stirred at this temperature for 30 min. Trimethylborate (1.7 ml, 15 mmol) was added dropwise, and the mixture was allowed to warm to room temperature over 2 h and stirred overnight. After aqueous workup, the crude product was crystallized from hexanes. Single crystals suitable for X-ray analysis were obtained by recrystallization from a mixed solvent of ethyl acetate and hexane at ambient temperature (20–25°C).
H atoms were located in a difference Fourier map and refined isotropically.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Tert-butyl 2-borono-1
H-pyrrole-1-carboxylate
top Crystal data top C9H14BNO4 | F(000) = 896 |
Mr = 211.02 | Dx = 1.244 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 810 reflections |
a = 13.014 (3) Å | θ = 2.3–22.4° |
b = 9.940 (2) Å | µ = 0.10 mm−1 |
c = 17.417 (4) Å | T = 293 K |
V = 2252.9 (9) Å3 | Prism, colorless |
Z = 8 | 0.25 × 0.12 × 0.10 mm |
Data collection top Bruker SMART 1000 CCD area-detector diffractometer | 1208 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.065 |
Graphite monochromator | θmax = 26.0°, θmin = 2.3° |
ϕ and ω scans | h = −16→13 |
9542 measured reflections | k = −12→12 |
2213 independent reflections | l = −21→19 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | All H-atom parameters refined |
S = 0.85 | w = 1/[σ2(Fo2) + (0.0588P)2] where P = (Fo2 + 2Fc2)/3 |
2213 reflections | (Δ/σ)max < 0.001 |
192 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Crystal data top C9H14BNO4 | V = 2252.9 (9) Å3 |
Mr = 211.02 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.014 (3) Å | µ = 0.10 mm−1 |
b = 9.940 (2) Å | T = 293 K |
c = 17.417 (4) Å | 0.25 × 0.12 × 0.10 mm |
Data collection top Bruker SMART 1000 CCD area-detector diffractometer | 1208 reflections with I > 2σ(I) |
9542 measured reflections | Rint = 0.065 |
2213 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.106 | All H-atom parameters refined |
S = 0.85 | Δρmax = 0.12 e Å−3 |
2213 reflections | Δρmin = −0.21 e Å−3 |
192 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
B1 | 1.03949 (15) | 0.6990 (2) | 0.51802 (11) | 0.0727 (6) | |
C1 | 1.09811 (14) | 1.0494 (2) | 0.59196 (12) | 0.0767 (5) | |
C2 | 1.17519 (16) | 1.0274 (3) | 0.54329 (13) | 0.0893 (7) | |
C3 | 1.16298 (14) | 0.8995 (3) | 0.51194 (12) | 0.0821 (6) | |
C4 | 1.07732 (12) | 0.83956 (18) | 0.54116 (8) | 0.0644 (5) | |
C5 | 0.94986 (12) | 0.92187 (19) | 0.63777 (9) | 0.0635 (4) | |
C6 | 0.85439 (15) | 1.03344 (19) | 0.74024 (10) | 0.0771 (5) | |
C7 | 0.75166 (18) | 1.0282 (3) | 0.70204 (16) | 0.0955 (7) | |
C8 | 0.8711 (3) | 0.9215 (3) | 0.79700 (14) | 0.1000 (7) | |
C9 | 0.8746 (3) | 1.1693 (3) | 0.7756 (2) | 0.1119 (9) | |
N1 | 1.03646 (9) | 0.93560 (14) | 0.59221 (7) | 0.0631 (4) | |
O1 | 0.93714 (8) | 1.02801 (13) | 0.68119 (7) | 0.0754 (4) | |
O2 | 0.89519 (9) | 0.82427 (13) | 0.63724 (7) | 0.0776 (4) | |
O3 | 0.95566 (10) | 0.63485 (15) | 0.54641 (8) | 0.0921 (5) | |
O4 | 1.09809 (10) | 0.6338 (2) | 0.46635 (8) | 0.0960 (5) | |
H3 | 1.2044 (14) | 0.8510 (17) | 0.4741 (10) | 0.083 (5)* | |
H7A | 0.7006 (17) | 1.040 (2) | 0.7397 (13) | 0.104 (7)* | |
H7B | 0.7430 (18) | 1.106 (3) | 0.6664 (14) | 0.131 (10)* | |
H8A | 0.8247 (16) | 0.934 (2) | 0.8403 (14) | 0.109 (7)* | |
H1 | 1.0760 (14) | 1.126 (2) | 0.6241 (11) | 0.089 (6)* | |
H9A | 0.8259 (16) | 1.184 (2) | 0.8132 (14) | 0.122 (8)* | |
H9B | 0.8706 (15) | 1.236 (2) | 0.7359 (14) | 0.109 (9)* | |
H7C | 0.7384 (15) | 0.942 (2) | 0.6764 (13) | 0.104 (7)* | |
H2 | 1.2262 (17) | 1.090 (2) | 0.5323 (11) | 0.104 (7)* | |
H8B | 0.941 (2) | 0.928 (2) | 0.8167 (14) | 0.130 (9)* | |
H9C | 0.949 (2) | 1.169 (3) | 0.7937 (16) | 0.169 (12)* | |
H8C | 0.8565 (17) | 0.826 (3) | 0.7735 (14) | 0.135 (9)* | |
H3A | 0.9265 (14) | 0.6888 (19) | 0.5791 (11) | 0.087 (6)* | |
H4 | 1.080 (2) | 0.548 (3) | 0.4581 (16) | 0.145 (12)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
B1 | 0.0572 (11) | 0.1046 (17) | 0.0563 (11) | 0.0146 (11) | −0.0040 (9) | −0.0053 (11) |
C1 | 0.0616 (11) | 0.0916 (15) | 0.0767 (12) | −0.0077 (11) | −0.0134 (10) | 0.0135 (12) |
C2 | 0.0590 (12) | 0.120 (2) | 0.0888 (15) | −0.0117 (12) | −0.0074 (11) | 0.0335 (14) |
C3 | 0.0565 (11) | 0.1260 (19) | 0.0638 (11) | 0.0091 (12) | 0.0003 (9) | 0.0161 (13) |
C4 | 0.0524 (9) | 0.0915 (13) | 0.0492 (8) | 0.0113 (9) | −0.0034 (7) | 0.0069 (9) |
C5 | 0.0586 (10) | 0.0744 (12) | 0.0576 (9) | 0.0032 (9) | −0.0030 (8) | 0.0004 (9) |
C6 | 0.0834 (13) | 0.0832 (13) | 0.0647 (11) | 0.0110 (10) | 0.0065 (9) | −0.0149 (10) |
C7 | 0.0793 (15) | 0.116 (2) | 0.0913 (17) | 0.0166 (14) | 0.0054 (13) | −0.0170 (17) |
C8 | 0.119 (2) | 0.115 (2) | 0.0655 (13) | 0.0172 (16) | 0.0126 (14) | 0.0019 (14) |
C9 | 0.129 (2) | 0.103 (2) | 0.103 (2) | 0.0076 (16) | 0.0117 (18) | −0.0376 (18) |
N1 | 0.0494 (7) | 0.0814 (10) | 0.0585 (8) | −0.0007 (7) | −0.0031 (6) | 0.0075 (7) |
O1 | 0.0787 (8) | 0.0766 (8) | 0.0708 (7) | −0.0010 (6) | 0.0069 (6) | −0.0128 (7) |
O2 | 0.0698 (7) | 0.0786 (9) | 0.0844 (8) | −0.0067 (6) | 0.0214 (6) | −0.0166 (7) |
O3 | 0.0730 (8) | 0.1037 (11) | 0.0996 (10) | −0.0004 (7) | 0.0200 (7) | −0.0384 (8) |
O4 | 0.0799 (9) | 0.1217 (14) | 0.0863 (9) | 0.0147 (8) | 0.0190 (7) | −0.0238 (9) |
Geometric parameters (Å, º) top B1—O4 | 1.346 (2) | C6—C7 | 1.494 (3) |
B1—O3 | 1.357 (2) | C6—C8 | 1.504 (3) |
B1—C4 | 1.535 (3) | C6—C9 | 1.507 (3) |
C1—C2 | 1.331 (3) | C7—H7A | 0.94 (2) |
C1—N1 | 1.387 (2) | C7—H7B | 0.99 (3) |
C1—H1 | 0.99 (2) | C7—H7C | 0.98 (2) |
C2—C3 | 1.393 (3) | C8—H8A | 0.97 (2) |
C2—H2 | 0.93 (2) | C8—H8B | 0.98 (3) |
C3—C4 | 1.363 (3) | C8—H8C | 1.05 (3) |
C3—H3 | 0.978 (18) | C9—H9A | 0.92 (2) |
C4—N1 | 1.409 (2) | C9—H9B | 0.96 (2) |
C5—O2 | 1.2030 (19) | C9—H9C | 1.02 (3) |
C5—O1 | 1.309 (2) | O3—H3A | 0.87 (2) |
C5—N1 | 1.385 (2) | O4—H4 | 0.89 (3) |
C6—O1 | 1.490 (2) | | |
| | | |
O4—B1—O3 | 118.2 (2) | C6—C7—H7A | 108.5 (13) |
O4—B1—C4 | 115.60 (19) | C6—C7—H7B | 110.6 (14) |
O3—B1—C4 | 126.14 (17) | H7A—C7—H7B | 105.0 (18) |
C2—C1—N1 | 107.7 (2) | C6—C7—H7C | 112.9 (12) |
C2—C1—H1 | 135.0 (12) | H7A—C7—H7C | 107.4 (18) |
N1—C1—H1 | 117.2 (11) | H7B—C7—H7C | 112 (2) |
C1—C2—C3 | 108.3 (2) | C6—C8—H8A | 109.2 (12) |
C1—C2—H2 | 123.9 (13) | C6—C8—H8B | 108.4 (15) |
C3—C2—H2 | 127.8 (13) | H8A—C8—H8B | 107 (2) |
C4—C3—C2 | 110.3 (2) | C6—C8—H8C | 112.7 (13) |
C4—C3—H3 | 119.1 (11) | H8A—C8—H8C | 107.5 (18) |
C2—C3—H3 | 130.7 (10) | H8B—C8—H8C | 111 (2) |
C3—C4—N1 | 104.36 (18) | C6—C9—H9A | 107.9 (16) |
C3—C4—B1 | 124.22 (18) | C6—C9—H9B | 108.3 (13) |
N1—C4—B1 | 131.40 (15) | H9A—C9—H9B | 112 (2) |
O2—C5—O1 | 125.44 (15) | C6—C9—H9C | 107.0 (17) |
O2—C5—N1 | 123.79 (16) | H9A—C9—H9C | 116 (2) |
O1—C5—N1 | 110.77 (15) | H9B—C9—H9C | 106 (2) |
O1—C6—C7 | 109.75 (16) | C5—N1—C1 | 123.57 (16) |
O1—C6—C8 | 108.80 (16) | C5—N1—C4 | 127.01 (15) |
C7—C6—C8 | 113.4 (2) | C1—N1—C4 | 109.41 (16) |
O1—C6—C9 | 100.86 (18) | C5—O1—C6 | 121.30 (13) |
C7—C6—C9 | 111.6 (2) | B1—O3—H3A | 107.4 (12) |
C8—C6—C9 | 111.6 (2) | B1—O4—H4 | 114.5 (18) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3i | 0.89 (3) | 1.88 (3) | 2.769 (3) | 173 (3) |
O3—H3A···O2 | 0.87 (2) | 1.73 (2) | 2.5819 (18) | 164.7 (18) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data |
Chemical formula | C9H14BNO4 |
Mr | 211.02 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 13.014 (3), 9.940 (2), 17.417 (4) |
V (Å3) | 2252.9 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.25 × 0.12 × 0.10 |
|
Data collection |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9542, 2213, 1208 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.617 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.106, 0.85 |
No. of reflections | 2213 |
No. of parameters | 192 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.12, −0.21 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3i | 0.89 (3) | 1.88 (3) | 2.769 (3) | 173 (3) |
O3—H3A···O2 | 0.87 (2) | 1.73 (2) | 2.5819 (18) | 164.7 (18) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
We thank Professor Lin-Hong Weng, Fudan University, for the X-ray analysis.
References
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hall, D. G. (2005). Editor. Boronic Acids, Weinheim: Wiley-VCH. Google Scholar
Kelly, T. A. & Fuchs, V. U. (1993). Tetrahedron 49, 1009–1016. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Boronic acids are versatile compounds widely used in the synthesis of biaryls, as therapeutical agents, and as chemical sensors (Hall, 2005). The title compound is the key intermediate for the synthesis of (+)-pinanediol-L-boroproline (Kelly & Fuchs, 1993).
In the molecular structure of the title compound (Fig. 1), the pyrrole ring, the boronic acid group and the carboxyl groups are almost co-planar. The carbonyl links with the adjacent boronic acid group via O3—H3···O2 hydrogen bonding. Intermolecular hydrogen bond is also observed in the crystal structure (Table 1).