metal-organic compounds
Poly[[μ-aqua-aqua[μ4-ethyl (dichloromethylene)diphosphonato]sesquicalcium(II)] acetone hemisolvate 4.5-hydrate]
aDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland, and bLaboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
*Correspondence e-mail: jonna.jokiniemi@joensuu.fi
The title compound, {[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5CH3COCH3·4.5H2O}n, has a two-dimensional polymeric structure. The contains two crystallographically independent Ca2+ cations connected by a chelating and bridging ethyl (dichloromethylene)diphosphonate(3−) ligand and an aqua ligand. One of the Ca atoms, lying on a centre of symmetry, has a slightly distorted octahedral geometry, while the other Ca atom is seven-coordinated in a distorted monocapped trigonal-prismatic geometry. The polymeric layers are further connected by extensive O—H⋯O hydrogen bonding into a three-dimensional supramolecular network. The acetone solvent molecule and one uncoordinated water molecule are located on twofold rotation axes.
Related literature
For applications of metal complexes of bisphosphonates, see: Clearfield et al. (2001); Clearfield (1998); Fu et al. (2007); Serre et al. (2006). For calcium bisphosphonate complexes, see: Lin et al. (2007); Mathew et al. (1998). For metal complexes of bisphosphonate ester derivatives, see: Jokiniemi et al. (2007, 2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1997); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809010150/xu2487sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809010150/xu2487Isup2.hkl
Na3Cl2CP2O6Et (10.0 mg, 0.030 mmol) and CaCl2.2H2O (4.3 mg, 0.030 mmol) were dissolved separately in water (2.25 ml), the solutions were mixed, and tetramethoxysilane (TMOS 0.5 ml) was added. The two-phase system was shaken until homogeneous. After gel formation, a precipitant, acetone (1.0 ml), was added above the gel to induce crystallization. After about three months, colourless crystals suitable for X-ray analysis were formed uniformly throughout the gel as thin needles. The elemental analyses were performed several times and the results were consistent indicating that the acetone molecule and 3.5 water molecules were evaporated when the crystals were dried in air.
H atoms of the ethyl group and acetone molecule were placed at calculated positions in the riding-model approximation with C–H distances of 0.99 Å (methylene) and 0.98 Å (methyl), and with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). H atoms of the aqua ligands and lattice water molecules were located in a difference map and treated as riding, with O–H bond lengths constrained to 0.84–0.99 Å and with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(O).
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A part of the polymeric structure of the title compound showing the atomic numbering scheme and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines. Atoms labelled with suffixes A–F are at the symmetry positions (1/2 - x, 1/2 - y, -z), (1/2 - x, 1/2 + y, 1/2 - z), (x, -y, 1/2 + z), (x, -y, z - 1/2), (1/2 - x, y - 1/2, 1/2 - z) and (- x, y, 3/2 - z), respectively. | |
Fig. 2. Packing of the title compound viewed along the c-axis showing the hydrogen bond interactions. CaO6 and CaO7 polyhedra are presented in light grey and PO3C tetrahedra in dark grey. Ethyl groups, chlorine atoms and H atoms of the acetone molecules are omitted for clarity. |
[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2O | F(000) = 1968 |
Mr = 476.17 | Dx = 1.758 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 31118 reflections |
a = 31.2205 (3) Å | θ = 2.7–28.0° |
b = 10.1546 (1) Å | µ = 1.02 mm−1 |
c = 11.6510 (1) Å | T = 150 K |
β = 103.107 (1)° | Needle, colourless |
V = 3597.51 (6) Å3 | 0.25 × 0.15 × 0.10 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 4209 independent reflections |
Radiation source: fine-focus sealed tube | 3617 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
ϕ scans, and ω scans with κ offsets | θmax = 28.0°, θmin = 2.7° |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) | h = −40→40 |
Tmin = 0.823, Tmax = 0.905 | k = −13→13 |
31118 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.02P)2 + 12P] where P = (Fo2 + 2Fc2)/3 |
4209 reflections | (Δ/σ)max = 0.001 |
213 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2O | V = 3597.51 (6) Å3 |
Mr = 476.17 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 31.2205 (3) Å | µ = 1.02 mm−1 |
b = 10.1546 (1) Å | T = 150 K |
c = 11.6510 (1) Å | 0.25 × 0.15 × 0.10 mm |
β = 103.107 (1)° |
Nonius KappaCCD diffractometer | 4209 independent reflections |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) | 3617 reflections with I > 2σ(I) |
Tmin = 0.823, Tmax = 0.905 | Rint = 0.055 |
31118 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.02P)2 + 12P] where P = (Fo2 + 2Fc2)/3 |
4209 reflections | Δρmax = 0.47 e Å−3 |
213 parameters | Δρmin = −0.58 e Å−3 |
Experimental. These results are supported by the IR spectrum and TG analysis. Anal. Found: C, 9.30; H, 3.06%. Calc. for C3H11Cl2Ca1.5O9P2: C, 9.38; H, 2.89%. Main IR absorptions (KBr pellet, cm-1): 3385 (b,s), 2995 (w), 1648 (b,m), 1389 (m), 1213 (s), 1148 (s), 1105 (versus), 1082 (versus), 1048 (m), 1008 (m), 959 (m), 871 (m), 852 (w), 760 (m). 31P CP/MAS NMR: δP 7.4 and 5.1 p.p.m.. TGA (25–700 °C under a synthetic air): 25–180 °C 13.1% (calculated 14.1% for the loss of three water molecules). The observed total weight loss is 40.0% (calculated 41.1% if the final product is assumed to be a mixture of Ca(PO3)2 and CaO in a molar ratio of 2:1). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.2500 | 0.2500 | 0.0000 | 0.00999 (12) | |
Ca2 | 0.248223 (14) | 0.12782 (4) | 0.36375 (3) | 0.00930 (9) | |
Cl1 | 0.129792 (17) | −0.08747 (5) | 0.13650 (4) | 0.01375 (11) | |
Cl2 | 0.137474 (18) | 0.01918 (5) | −0.08762 (4) | 0.01548 (11) | |
P1 | 0.218448 (17) | −0.04904 (5) | 0.08794 (4) | 0.00900 (11) | |
P2 | 0.160183 (17) | 0.18410 (5) | 0.12307 (5) | 0.00960 (11) | |
O1 | 0.28281 (5) | 0.23098 (14) | 0.20444 (12) | 0.0126 (3) | |
H1A | 0.2911 | 0.3217 | 0.2318 | 0.015* | |
H1B | 0.3108 | 0.1830 | 0.2091 | 0.015* | |
O2 | 0.32098 (5) | 0.03608 (14) | 0.41612 (13) | 0.0129 (3) | |
H2A | 0.3353 | 0.0476 | 0.3639 | 0.019* | |
H2B | 0.3198 | −0.0467 | 0.4244 | 0.019* | |
O3 | 0.36311 (5) | 0.09774 (16) | 0.24321 (14) | 0.0178 (3) | |
H3A | 0.3899 | 0.1215 | 0.2683 | 0.027* | |
H3B | 0.3643 | 0.0198 | 0.2163 | 0.027* | |
O4 | 0.13454 (5) | 0.36331 (16) | 0.37057 (14) | 0.0180 (3) | |
H4A | 0.1472 | 0.3000 | 0.3430 | 0.027* | |
H4B | 0.1530 | 0.3864 | 0.4332 | 0.027* | |
O5 | 0.05044 (6) | 0.30916 (18) | 0.41409 (16) | 0.0269 (4) | |
H5A | 0.0775 | 0.3154 | 0.4142 | 0.040* | |
H5B | 0.0476 | 0.3118 | 0.4851 | 0.040* | |
O6 | 0.05040 (6) | 0.32700 (17) | 0.66254 (16) | 0.0238 (4) | |
H6A | 0.0405 | 0.2579 | 0.6883 | 0.036* | |
H6B | 0.0285 | 0.3765 | 0.6374 | 0.036* | |
O7 | 0.0000 | 0.4816 (2) | 0.2500 | 0.0224 (5) | |
H7 | 0.0189 | 0.4385 | 0.2985 | 0.034* | |
O8 | 0.0000 | 0.1357 (2) | 0.7500 | 0.0265 (6) | |
O11 | 0.24121 (5) | 0.03290 (14) | 0.00999 (12) | 0.0107 (3) | |
O12 | 0.23607 (5) | −0.03674 (14) | 0.21857 (12) | 0.0108 (3) | |
O13 | 0.21597 (5) | −0.18636 (14) | 0.04307 (12) | 0.0103 (3) | |
O21 | 0.18181 (5) | 0.26929 (14) | 0.04781 (13) | 0.0116 (3) | |
O22 | 0.17957 (5) | 0.18469 (14) | 0.25168 (12) | 0.0115 (3) | |
O23 | 0.10987 (5) | 0.21652 (15) | 0.10779 (13) | 0.0132 (3) | |
C1 | 0.16168 (7) | 0.0176 (2) | 0.06555 (17) | 0.0104 (4) | |
C21 | 0.08235 (8) | 0.2669 (2) | 0.0003 (2) | 0.0196 (5) | |
H21A | 0.0615 | 0.1982 | −0.0384 | 0.024* | |
H21B | 0.1006 | 0.2944 | −0.0548 | 0.024* | |
C22 | 0.05800 (9) | 0.3813 (3) | 0.0325 (3) | 0.0292 (6) | |
H22A | 0.0416 | 0.3541 | 0.0911 | 0.044* | |
H22B | 0.0374 | 0.4143 | −0.0380 | 0.044* | |
H22C | 0.0788 | 0.4511 | 0.0656 | 0.044* | |
C2 | 0.0000 | 0.0182 (3) | 0.7500 | 0.0228 (7) | |
C3 | −0.02303 (10) | −0.0568 (3) | 0.8273 (3) | 0.0394 (7) | |
H3C | −0.0317 | 0.0033 | 0.8837 | 0.059* | |
H3D | −0.0033 | −0.1244 | 0.8701 | 0.059* | |
H3E | −0.0493 | −0.0990 | 0.7791 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0143 (3) | 0.0066 (3) | 0.0097 (3) | −0.0003 (2) | 0.0041 (2) | 0.0006 (2) |
Ca2 | 0.0130 (2) | 0.00660 (18) | 0.00840 (19) | −0.00024 (15) | 0.00261 (15) | 0.00003 (14) |
Cl1 | 0.0156 (2) | 0.0112 (2) | 0.0157 (3) | −0.00233 (19) | 0.00603 (19) | 0.00042 (18) |
Cl2 | 0.0205 (3) | 0.0151 (2) | 0.0094 (2) | 0.0024 (2) | 0.00041 (19) | −0.00142 (18) |
P1 | 0.0129 (3) | 0.0059 (2) | 0.0088 (3) | 0.00034 (19) | 0.00368 (19) | 0.00012 (18) |
P2 | 0.0122 (3) | 0.0072 (2) | 0.0097 (3) | 0.00102 (19) | 0.0030 (2) | 0.00008 (18) |
O1 | 0.0177 (8) | 0.0088 (7) | 0.0112 (7) | −0.0003 (6) | 0.0030 (6) | −0.0011 (5) |
O2 | 0.0160 (7) | 0.0083 (7) | 0.0154 (8) | −0.0001 (6) | 0.0054 (6) | 0.0010 (6) |
O3 | 0.0171 (8) | 0.0164 (8) | 0.0199 (8) | 0.0005 (6) | 0.0045 (6) | 0.0000 (6) |
O4 | 0.0205 (8) | 0.0176 (8) | 0.0152 (8) | 0.0029 (6) | 0.0027 (6) | −0.0036 (6) |
O5 | 0.0227 (9) | 0.0291 (10) | 0.0296 (10) | −0.0008 (8) | 0.0074 (7) | −0.0014 (8) |
O6 | 0.0200 (9) | 0.0214 (9) | 0.0297 (10) | −0.0012 (7) | 0.0053 (7) | 0.0032 (7) |
O7 | 0.0205 (12) | 0.0243 (13) | 0.0216 (12) | 0.000 | 0.0032 (10) | 0.000 |
O8 | 0.0306 (14) | 0.0174 (12) | 0.0344 (15) | 0.000 | 0.0130 (11) | 0.000 |
O11 | 0.0159 (7) | 0.0068 (7) | 0.0109 (7) | 0.0000 (6) | 0.0057 (6) | 0.0007 (5) |
O12 | 0.0146 (7) | 0.0086 (7) | 0.0092 (7) | 0.0005 (6) | 0.0027 (6) | −0.0010 (5) |
O13 | 0.0137 (7) | 0.0072 (7) | 0.0103 (7) | 0.0009 (5) | 0.0030 (6) | −0.0011 (5) |
O21 | 0.0155 (7) | 0.0068 (7) | 0.0135 (7) | 0.0009 (6) | 0.0052 (6) | 0.0003 (5) |
O22 | 0.0146 (7) | 0.0095 (7) | 0.0102 (7) | 0.0017 (6) | 0.0025 (6) | −0.0010 (5) |
O23 | 0.0130 (7) | 0.0128 (7) | 0.0138 (7) | 0.0040 (6) | 0.0031 (6) | 0.0019 (6) |
C1 | 0.0134 (10) | 0.0085 (9) | 0.0095 (10) | −0.0008 (8) | 0.0031 (8) | 0.0006 (7) |
C21 | 0.0190 (11) | 0.0221 (12) | 0.0155 (11) | 0.0052 (9) | −0.0009 (9) | 0.0015 (9) |
C22 | 0.0262 (13) | 0.0223 (13) | 0.0356 (15) | 0.0100 (11) | −0.0002 (11) | 0.0030 (11) |
C2 | 0.0166 (16) | 0.0189 (17) | 0.033 (2) | 0.000 | 0.0050 (14) | 0.000 |
C3 | 0.0362 (16) | 0.0276 (15) | 0.061 (2) | 0.0062 (13) | 0.0253 (15) | 0.0149 (14) |
Ca1—O1i | 2.3778 (14) | P2—O22 | 1.4834 (15) |
Ca1—O1 | 2.3778 (14) | P2—O21 | 1.4972 (15) |
Ca1—O11 | 2.2278 (14) | P2—O23 | 1.5750 (15) |
Ca1—O11i | 2.2278 (14) | P2—C1 | 1.823 (2) |
Ca1—O21i | 2.3279 (15) | O1—H1A | 0.9900 |
Ca1—O21 | 2.3279 (15) | O1—H1B | 0.9900 |
Ca1—P2i | 3.4915 (5) | O2—H2A | 0.8414 |
Ca1—P2 | 3.4915 (5) | O2—H2B | 0.8477 |
Ca1—P1i | 3.4204 (5) | O3—H3A | 0.8560 |
Ca1—P1 | 3.4204 (5) | O3—H3B | 0.8554 |
Ca1—Ca2ii | 4.1476 (4) | O4—H4A | 0.8541 |
Ca1—Ca2iii | 4.1476 (4) | O4—H4B | 0.8536 |
Ca2—O1 | 2.5726 (15) | O5—H5A | 0.8468 |
Ca2—O2 | 2.4024 (15) | O5—H5B | 0.8525 |
Ca2—O11iv | 2.4049 (15) | O6—H6A | 0.8481 |
Ca2—O12 | 2.3466 (14) | O6—H6B | 0.8448 |
Ca2—O13iii | 2.3320 (15) | O7—H7 | 0.8416 |
Ca2—O13iv | 2.5858 (15) | O8—C2 | 1.193 (4) |
Ca2—O22 | 2.3158 (15) | O11—Ca2ii | 2.4049 (15) |
Ca2—P1iv | 3.0705 (6) | O13—Ca2vi | 2.3320 (15) |
Ca2—P1iii | 3.4498 (6) | O13—Ca2ii | 2.5858 (15) |
Ca2—P2 | 3.4999 (7) | O23—C21 | 1.442 (3) |
Ca2—Ca2v | 4.0111 (8) | C21—C22 | 1.482 (3) |
Ca2—Ca1vi | 4.1476 (4) | C21—H21A | 0.9900 |
Ca2—H2A | 2.8382 | C21—H21B | 0.9900 |
Ca2—H2B | 2.8142 | C22—H22A | 0.9800 |
Cl1—C1 | 1.785 (2) | C22—H22B | 0.9800 |
Cl2—C1 | 1.773 (2) | C22—H22C | 0.9800 |
P1—O13 | 1.4851 (15) | C2—C3vii | 1.484 (3) |
P1—O12 | 1.5016 (15) | C2—C3 | 1.484 (3) |
P1—O11 | 1.5216 (15) | C3—H3C | 0.9800 |
P1—C1 | 1.860 (2) | C3—H3D | 0.9800 |
P1—Ca2ii | 3.0705 (6) | C3—H3E | 0.9800 |
P1—Ca2vi | 3.4498 (6) | ||
O21i—Ca1—O21 | 180.00 (6) | P2—Ca2—Ca2v | 114.135 (18) |
O21i—Ca1—O11 | 93.40 (5) | O22—Ca2—Ca1vi | 112.14 (4) |
O21—Ca1—O11 | 86.60 (5) | O13iii—Ca2—Ca1vi | 127.37 (4) |
O21i—Ca1—O11i | 86.60 (5) | O2—Ca2—Ca1vi | 67.31 (4) |
O21—Ca1—O11i | 93.40 (5) | O12—Ca2—Ca1vi | 66.62 (4) |
O11—Ca1—O11i | 180.00 (8) | O11iv—Ca2—Ca1vi | 25.39 (3) |
O21i—Ca1—O1i | 88.67 (5) | O1—Ca2—Ca1vi | 132.96 (4) |
O21—Ca1—O1i | 91.33 (5) | O13iv—Ca2—Ca1vi | 82.95 (3) |
O11—Ca1—O1i | 95.88 (5) | P1iv—Ca2—Ca1vi | 54.110 (11) |
O11i—Ca1—O1i | 84.12 (5) | P1iii—Ca2—Ca1vi | 147.146 (14) |
O21i—Ca1—O1 | 91.33 (5) | P2—Ca2—Ca1vi | 113.429 (13) |
O21—Ca1—O1 | 88.67 (5) | Ca2v—Ca2—Ca1vi | 105.887 (14) |
O11—Ca1—O1 | 84.12 (5) | O22—Ca2—H2A | 146.7 |
O11i—Ca1—O1 | 95.88 (5) | O13iii—Ca2—H2A | 82.8 |
O1i—Ca1—O1 | 180.00 (11) | O2—Ca2—H2A | 15.8 |
O21i—Ca1—P2i | 19.02 (4) | O12—Ca2—H2A | 78.1 |
O21—Ca1—P2i | 160.98 (4) | O11iv—Ca2—H2A | 92.6 |
O11—Ca1—P2i | 109.33 (4) | O1—Ca2—H2A | 63.8 |
O11i—Ca1—P2i | 70.67 (4) | O13iv—Ca2—H2A | 127.9 |
O1i—Ca1—P2i | 77.10 (4) | P1iv—Ca2—H2A | 113.6 |
O1—Ca1—P2i | 102.90 (4) | P1iii—Ca2—H2A | 91.1 |
O21i—Ca1—P2 | 160.98 (4) | P2—Ca2—H2A | 128.7 |
O21—Ca1—P2 | 19.02 (4) | Ca2v—Ca2—H2A | 108.8 |
O11—Ca1—P2 | 70.67 (4) | Ca1vi—Ca2—H2A | 78.7 |
O11i—Ca1—P2 | 109.33 (4) | O22—Ca2—H2B | 151.6 |
O1i—Ca1—P2 | 102.90 (4) | O13iii—Ca2—H2B | 97.1 |
O1—Ca1—P2 | 77.10 (4) | O2—Ca2—H2B | 16.4 |
P2i—Ca1—P2 | 180.000 (18) | O12—Ca2—H2B | 73.8 |
O21i—Ca1—P1i | 70.24 (4) | O11iv—Ca2—H2B | 65.8 |
O21—Ca1—P1i | 109.76 (4) | O1—Ca2—H2B | 89.9 |
O11—Ca1—P1i | 160.29 (4) | O13iv—Ca2—H2B | 112.0 |
O11i—Ca1—P1i | 19.71 (4) | P1iv—Ca2—H2B | 89.9 |
O1i—Ca1—P1i | 73.49 (4) | P1iii—Ca2—H2B | 111.4 |
O1—Ca1—P1i | 106.51 (4) | P2—Ca2—H2B | 137.6 |
P2i—Ca1—P1i | 52.709 (12) | Ca2v—Ca2—H2B | 108.2 |
P2—Ca1—P1i | 127.291 (12) | Ca1vi—Ca2—H2B | 51.7 |
O21i—Ca1—P1 | 109.76 (4) | H2A—Ca2—H2B | 27.5 |
O21—Ca1—P1 | 70.24 (4) | O13—P1—O12 | 114.38 (8) |
O11—Ca1—P1 | 19.71 (4) | O13—P1—O11 | 107.30 (8) |
O11i—Ca1—P1 | 160.29 (4) | O12—P1—O11 | 116.49 (8) |
O1i—Ca1—P1 | 106.51 (4) | O13—P1—C1 | 108.70 (9) |
O1—Ca1—P1 | 73.49 (4) | O12—P1—C1 | 103.32 (9) |
P2i—Ca1—P1 | 127.291 (12) | O11—P1—C1 | 106.05 (9) |
P2—Ca1—P1 | 52.709 (12) | O13—P1—Ca2ii | 57.15 (6) |
P1i—Ca1—P1 | 180.000 (17) | O12—P1—Ca2ii | 140.52 (6) |
O21i—Ca1—Ca2ii | 76.36 (4) | O11—P1—Ca2ii | 50.37 (6) |
O21—Ca1—Ca2ii | 103.64 (4) | C1—P1—Ca2ii | 116.00 (7) |
O11—Ca1—Ca2ii | 27.57 (4) | O12—P1—Ca2vi | 83.46 (6) |
O11i—Ca1—Ca2ii | 152.43 (4) | O11—P1—Ca2vi | 116.94 (6) |
O1i—Ca1—Ca2ii | 74.12 (4) | C1—P1—Ca2vi | 127.72 (7) |
O1—Ca1—Ca2ii | 105.88 (4) | Ca2ii—P1—Ca2vi | 75.679 (16) |
P2i—Ca1—Ca2ii | 87.845 (10) | O13—P1—Ca1 | 136.36 (6) |
P2—Ca1—Ca2ii | 92.155 (10) | O12—P1—Ca1 | 99.53 (6) |
P1i—Ca1—Ca2ii | 133.342 (10) | C1—P1—Ca1 | 87.98 (6) |
P1—Ca1—Ca2ii | 46.658 (10) | Ca2ii—P1—Ca1 | 79.232 (14) |
O21i—Ca1—Ca2iii | 103.64 (4) | Ca2vi—P1—Ca1 | 142.808 (18) |
O21—Ca1—Ca2iii | 76.36 (4) | O22—P2—O21 | 117.03 (9) |
O11—Ca1—Ca2iii | 152.43 (4) | O22—P2—O23 | 106.35 (8) |
O11i—Ca1—Ca2iii | 27.57 (4) | O21—P2—O23 | 112.56 (8) |
O1i—Ca1—Ca2iii | 105.88 (4) | O22—P2—C1 | 109.66 (9) |
O1—Ca1—Ca2iii | 74.12 (4) | O21—P2—C1 | 105.54 (9) |
P2i—Ca1—Ca2iii | 92.155 (10) | O23—P2—C1 | 105.09 (9) |
P2—Ca1—Ca2iii | 87.845 (10) | O22—P2—Ca1 | 103.43 (6) |
P1i—Ca1—Ca2iii | 46.658 (10) | O23—P2—Ca1 | 141.89 (6) |
P1—Ca1—Ca2iii | 133.342 (10) | C1—P2—Ca1 | 86.38 (7) |
Ca2ii—Ca1—Ca2iii | 180.000 (14) | O21—P2—Ca2 | 100.78 (6) |
O22—Ca2—O13iii | 110.21 (5) | O23—P2—Ca2 | 134.96 (6) |
O22—Ca2—O2 | 160.19 (5) | C1—P2—Ca2 | 93.57 (7) |
O13iii—Ca2—O2 | 82.51 (5) | Ca1—P2—Ca2 | 78.603 (13) |
O22—Ca2—O12 | 78.08 (5) | Ca1—O1—Ca2 | 126.86 (6) |
O13iii—Ca2—O12 | 153.36 (5) | Ca1—O1—H1A | 105.6 |
O2—Ca2—O12 | 84.02 (5) | Ca2—O1—H1A | 105.6 |
O22—Ca2—O11iv | 110.33 (5) | Ca1—O1—H1B | 105.6 |
O13iii—Ca2—O11iv | 109.29 (5) | Ca2—O1—H1B | 105.6 |
O2—Ca2—O11iv | 77.85 (5) | H1A—O1—H1B | 106.1 |
O12—Ca2—O11iv | 90.09 (5) | Ca2—O2—H2A | 112.9 |
O22—Ca2—O1 | 88.74 (5) | Ca2—O2—H2B | 110.5 |
O13iii—Ca2—O1 | 76.76 (5) | H2A—O2—H2B | 105.3 |
O2—Ca2—O1 | 79.26 (5) | H3A—O3—H3B | 105.4 |
O12—Ca2—O1 | 78.20 (5) | H4A—O4—H4B | 104.4 |
O11iv—Ca2—O1 | 155.24 (5) | H5A—O5—H5B | 108.6 |
O22—Ca2—O13iv | 85.30 (5) | H6A—O6—H6B | 106.6 |
O13iii—Ca2—O13iv | 70.81 (6) | P1—O11—Ca1 | 130.70 (8) |
O2—Ca2—O13iv | 113.76 (5) | P1—O11—Ca2ii | 100.46 (7) |
O12—Ca2—O13iv | 135.83 (5) | Ca1—O11—Ca2ii | 127.05 (6) |
O11iv—Ca2—O13iv | 57.92 (5) | P1—O12—Ca2 | 138.76 (9) |
O1—Ca2—O13iv | 142.51 (5) | P1—O13—Ca2vi | 127.93 (8) |
O22—Ca2—P1iv | 97.16 (4) | P1—O13—Ca2ii | 94.01 (7) |
O13iii—Ca2—P1iv | 91.17 (4) | Ca2vi—O13—Ca2ii | 109.19 (6) |
O2—Ca2—P1iv | 97.71 (4) | P2—O21—Ca1 | 130.53 (8) |
O12—Ca2—P1iv | 113.39 (4) | P2—O22—Ca2 | 133.01 (9) |
O11iv—Ca2—P1iv | 29.16 (3) | C21—O23—P2 | 123.71 (14) |
O1—Ca2—P1iv | 167.82 (4) | Cl2—C1—Cl1 | 108.43 (11) |
O13iv—Ca2—P1iv | 28.85 (3) | Cl2—C1—P1 | 108.63 (11) |
O22—Ca2—P1iii | 93.51 (4) | Cl1—C1—P1 | 109.34 (11) |
O13iii—Ca2—P1iii | 19.85 (4) | Cl2—C1—P2 | 108.74 (11) |
O2—Ca2—P1iii | 95.43 (4) | Cl1—C1—P2 | 108.71 (11) |
O12—Ca2—P1iii | 142.04 (4) | P1—C1—P2 | 112.90 (11) |
O11iv—Ca2—P1iii | 127.05 (4) | O23—C21—C22 | 107.30 (19) |
O1—Ca2—P1iii | 64.53 (3) | O23—C21—H21A | 110.3 |
O13iv—Ca2—P1iii | 78.92 (3) | C22—C21—H21A | 110.3 |
P1iv—Ca2—P1iii | 104.321 (16) | O23—C21—H21B | 110.3 |
O22—Ca2—P2 | 18.06 (4) | C22—C21—H21B | 110.3 |
O13iii—Ca2—P2 | 116.57 (4) | H21A—C21—H21B | 108.5 |
O2—Ca2—P2 | 142.41 (4) | C21—C22—H22A | 109.5 |
O12—Ca2—P2 | 64.50 (4) | C21—C22—H22B | 109.5 |
O11iv—Ca2—P2 | 119.83 (4) | H22A—C22—H22B | 109.5 |
O1—Ca2—P2 | 74.77 (4) | C21—C22—H22C | 109.5 |
O13iv—Ca2—P2 | 103.35 (3) | H22A—C22—H22C | 109.5 |
P1iv—Ca2—P2 | 112.947 (18) | H22B—C22—H22C | 109.5 |
P1iii—Ca2—P2 | 97.378 (15) | O8—C2—C3vii | 120.89 (17) |
O22—Ca2—Ca2v | 98.51 (4) | O8—C2—C3 | 120.89 (17) |
O13iii—Ca2—Ca2v | 37.50 (4) | C3vii—C2—C3 | 118.2 (3) |
O2—Ca2—Ca2v | 100.60 (4) | C2—C3—H3C | 109.5 |
O12—Ca2—Ca2v | 169.12 (4) | C2—C3—H3D | 109.5 |
O11iv—Ca2—Ca2v | 81.36 (4) | H3C—C3—H3D | 109.5 |
O1—Ca2—Ca2v | 112.23 (4) | C2—C3—H3E | 109.5 |
O13iv—Ca2—Ca2v | 33.30 (3) | H3C—C3—H3E | 109.5 |
P1iv—Ca2—Ca2v | 56.443 (13) | H3D—C3—H3E | 109.5 |
P1iii—Ca2—Ca2v | 47.877 (12) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x, −y, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y, z+1/2; (v) −x+1/2, −y+1/2, −z+1; (vi) −x+1/2, y−1/2, −z+1/2; (vii) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O3 | 0.99 | 1.81 | 2.794 (2) | 171 |
O1—H1A···O12iii | 0.99 | 1.83 | 2.637 (2) | 137 |
O2—H2A···O3 | 0.84 | 1.88 | 2.717 (2) | 172 |
O2—H2B···O21vi | 0.85 | 1.90 | 2.746 (2) | 177 |
O3—H3A···O6v | 0.86 | 1.93 | 2.782 (2) | 175 |
O3—H3B···O4vi | 0.86 | 1.89 | 2.734 (2) | 169 |
O4—H4A···O22 | 0.85 | 2.00 | 2.841 (2) | 166 |
O4—H4B···O2v | 0.85 | 1.93 | 2.754 (2) | 163 |
O5—H5A···O4 | 0.85 | 2.02 | 2.838 (2) | 163 |
O5—H5B···O6 | 0.85 | 2.05 | 2.901 (3) | 171 |
O6—H6A···O8 | 0.85 | 2.02 | 2.831 (2) | 161 |
O6—H6B···O7viii | 0.84 | 2.26 | 2.832 (2) | 125 |
O7—H7···O5 | 0.84 | 1.98 | 2.799 (2) | 166 |
Symmetry codes: (iii) −x+1/2, y+1/2, −z+1/2; (v) −x+1/2, −y+1/2, −z+1; (vi) −x+1/2, y−1/2, −z+1/2; (viii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2O |
Mr | 476.17 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 31.2205 (3), 10.1546 (1), 11.6510 (1) |
β (°) | 103.107 (1) |
V (Å3) | 3597.51 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.25 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (XPREP in SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.823, 0.905 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31118, 4209, 3617 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.073, 1.10 |
No. of reflections | 4209 |
No. of parameters | 213 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.02P)2 + 12P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.47, −0.58 |
Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).
Ca1—O1 | 2.3778 (14) | Ca2—O11i | 2.4049 (15) |
Ca1—O11 | 2.2278 (14) | Ca2—O12 | 2.3466 (14) |
Ca1—O21 | 2.3279 (15) | Ca2—O13ii | 2.3320 (15) |
Ca2—O1 | 2.5726 (15) | Ca2—O13i | 2.5858 (15) |
Ca2—O2 | 2.4024 (15) | Ca2—O22 | 2.3158 (15) |
Symmetry codes: (i) x, −y, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O3 | 0.99 | 1.81 | 2.794 (2) | 170.7 |
O1—H1A···O12ii | 0.99 | 1.83 | 2.637 (2) | 136.6 |
O2—H2A···O3 | 0.84 | 1.88 | 2.717 (2) | 171.5 |
O2—H2B···O21iii | 0.85 | 1.90 | 2.746 (2) | 176.8 |
O3—H3A···O6iv | 0.86 | 1.93 | 2.782 (2) | 175.4 |
O3—H3B···O4iii | 0.86 | 1.89 | 2.734 (2) | 169.3 |
O4—H4A···O22 | 0.85 | 2.00 | 2.841 (2) | 166.2 |
O4—H4B···O2iv | 0.85 | 1.93 | 2.754 (2) | 162.5 |
O5—H5A···O4 | 0.85 | 2.02 | 2.838 (2) | 162.6 |
O5—H5B···O6 | 0.85 | 2.05 | 2.901 (3) | 171.4 |
O6—H6A···O8 | 0.85 | 2.02 | 2.831 (2) | 160.5 |
O6—H6B···O7v | 0.84 | 2.26 | 2.832 (2) | 124.8 |
O7—H7···O5 | 0.84 | 1.98 | 2.799 (2) | 165.6 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1/2, −y+1/2, −z+1; (v) −x, −y+1, −z+1. |
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clearfield, A. (1998). Progress in Inorganic Chemistry: Metal Phosphonate Chemistry, Vol 47, edited by K. D. Karlin, pp. 371–510. New York: Wiley. Google Scholar
Clearfield, A., Krishnamohan Sharma, C. V. & Zhang, B. (2001). Chem. Mater. 13, 3099–3112. Web of Science CrossRef CAS Google Scholar
Fu, R., Hu, S. & Wu, X. (2007). Cryst. Growth Des. 7, 1134–1144. Web of Science CSD CrossRef CAS Google Scholar
Jokiniemi, J., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2008). CrystEngComm, 10, 1011–1017. Web of Science CSD CrossRef CAS Google Scholar
Jokiniemi, J., Vuokila-Laine, E., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2007). CrystEngComm, 9, 158–164. Web of Science CSD CrossRef CAS Google Scholar
Lin, L., Zhang, T.-J., Fan, Y.-T., Ding, D.-G. & Hou, H.-W. (2007). J. Mol. Struct. 837, 107–117. Web of Science CSD CrossRef CAS Google Scholar
Mathew, M., Fowler, B. O., Breuer, E., Golomb, G., Alferiev, I. S. & Eidelman, N. (1998). Inorg. Chem. 37, 6485–6494. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Serre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., Bein, T., Haouas, M., Taulelle, F. & Férey, G. (2006). Chem. Mater. 18, 1451–1457. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal bisphosphonates have been attracting closer attention in light of their important applications in industrial processes such as ion-exchange, catalysis and sorption (Clearfield et al., 2001, Clearfield, 1998, Fu et al., 2007). Metal bisphosphonates usually adopt layered or pillared layered structures (Fu et al., 2007, Mathew et al., 1998). Other structural types, such as 1-D and 3-D open networks, have also been prepared in order to study the properties of bisphosphonate solid materials (Lin et al., 2007, Fu et al., 2007). Most of the effective materials consist of open frameworks and microporous structures (Fu et al., 2007, Serre et al., 2006). In recent investigations, we studied the complexing properties of amide ester derivatives of (dichloromethylene)bisphosphonate, Cl2MBP (Jokiniemi et al., 2007, 2008). The introduction of various ester substituents into phosphonate groups can results in novel structures of metal bisphosphonates and lead to interesting functionalities. Of the numerous metal phosphonate compounds now known, only a small number have been prepared with alkali earth metals. We now present the crystal structure of the Ca(II) complex of the monoethyl ester derivative of Cl2MBP obtained by gel crystallization.
The title compound consists of two-dimensional layers parallel to the (100) plane. The Ca1 atom lies on the centre of symmetry with two symmetrically chelating (Cl2CP2O6Et)3- ligands and two aqua ligands in axial positions; the geometry is slightly distorted octahedron with Ca1–O bond lengths of 2.228 (1)–2.378 (1) Å (Table 1, Fig. 1). The three trans bond angles are 180.0°, while the cis bond angles range from 84.12 (5) to 95.88 (5)°. The aqua ligand O1 bridges Ca1 and the adjacent Ca2 atom with Ca···Ca distance of 4.4283 (4) Å. The Ca2 atom is seven-coordinated in distorted monocapped trigonal prismatic geometry and is coordinated by five phosphonate O atoms from three different (Cl2CP2O6Et)3- ligands. The coordination sphere is completed by two aqua ligands. The Ca2–O bond lengths are 2.316 (2)–2.586 (2) Å. The (Cl2CP2O6Et)3- ligand is coordinated to four Ca2+ cations through five O atoms forming two six-membered chelate rings with Ca1 and Ca2 atoms, and the P1 atom forms a four-membered chelate ring with the adjacent Ca2D atom (x, -y, z - 1/2). Thus, the two oxygen atoms (O11, O13) act as monoatomic bridges between two Ca atoms.
The layers are further connected by extensive hydrogen bonding (O···O 2.637 (2)–2.901 (3) Å, 125–177°) into a 3-D network with the interlayer distance of 15.2036 (2) Å (Fig. 2, Table 2). The O8 and C2 atoms of the acetone molecule, as well as the water molecule O7, are located on the individual two-fold rotation axis. The ethyl groups and chlorine atoms point out from the layers.