metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m436-m437

Poly[[μ-aqua-aqua­[μ4-ethyl (di­chloro­methyl­ene)di­phospho­nato]sesqui­calcium(II)] acetone hemisolvate 4.5-hydrate]

aDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland, and bLaboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
*Correspondence e-mail: jonna.jokiniemi@joensuu.fi

(Received 24 February 2009; accepted 19 March 2009; online 25 March 2009)

The title compound, {[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5CH3COCH3·4.5H2O}n, has a two-dimensional polymeric structure. The asymmetric unit contains two crystallographically independent Ca2+ cations connected by a chelating and bridging ethyl (dichloro­methyl­ene)diphos­pho­n­ate(3) ligand and an aqua ligand. One of the Ca atoms, lying on a centre of symmetry, has a slightly distorted octa­hedral geometry, while the other Ca atom is seven-coordinated in a distorted monocapped trigonal-prismatic geometry. The polymeric layers are further connected by extensive O—H⋯O hydrogen bonding into a three-dimensional supra­molecular network. The acetone solvent mol­ecule and one uncoordin­ated water mol­ecule are located on twofold rotation axes.

Related literature

For applications of metal complexes of bis­phospho­nates, see: Clearfield et al. (2001[Clearfield, A., Krishnamohan Sharma, C. V. & Zhang, B. (2001). Chem. Mater. 13, 3099-3112.]); Clearfield (1998[Clearfield, A. (1998). Progress in Inorganic Chemistry: Metal Phosphonate Chemistry, Vol 47, edited by K. D. Karlin, pp. 371-510. New York: Wiley.]); Fu et al. (2007[Fu, R., Hu, S. & Wu, X. (2007). Cryst. Growth Des. 7, 1134-1144.]); Serre et al. (2006[Serre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., Bein, T., Haouas, M., Taulelle, F. & Férey, G. (2006). Chem. Mater. 18, 1451-1457.]). For calcium bis­phospho­nate complexes, see: Lin et al. (2007[Lin, L., Zhang, T.-J., Fan, Y.-T., Ding, D.-G. & Hou, H.-W. (2007). J. Mol. Struct. 837, 107-117.]); Mathew et al. (1998[Mathew, M., Fowler, B. O., Breuer, E., Golomb, G., Alferiev, I. S. & Eidelman, N. (1998). Inorg. Chem. 37, 6485-6494.]). For metal complexes of bis­phospho­nate ester derivatives, see: Jokiniemi et al. (2007[Jokiniemi, J., Vuokila-Laine, E., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2007). CrystEngComm, 9, 158-164.], 2008[Jokiniemi, J., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2008). CrystEngComm, 10, 1011-1017.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2O

  • Mr = 476.17

  • Monoclinic, C 2/c

  • a = 31.2205 (3) Å

  • b = 10.1546 (1) Å

  • c = 11.6510 (1) Å

  • β = 103.107 (1)°

  • V = 3597.51 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 150 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.823, Tmax = 0.905

  • 31118 measured reflections

  • 4209 independent reflections

  • 3617 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.10

  • 4209 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Ca1—O1 2.3778 (14)
Ca1—O11 2.2278 (14)
Ca1—O21 2.3279 (15)
Ca2—O1 2.5726 (15)
Ca2—O2 2.4024 (15)
Ca2—O11i 2.4049 (15)
Ca2—O12 2.3466 (14)
Ca2—O13ii 2.3320 (15)
Ca2—O13i 2.5858 (15)
Ca2—O22 2.3158 (15)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3 0.99 1.81 2.794 (2) 171
O1—H1A⋯O12ii 0.99 1.83 2.637 (2) 137
O2—H2A⋯O3 0.84 1.88 2.717 (2) 172
O2—H2B⋯O21iii 0.85 1.90 2.746 (2) 177
O3—H3A⋯O6iv 0.86 1.93 2.782 (2) 175
O3—H3B⋯O4iii 0.86 1.89 2.734 (2) 169
O4—H4A⋯O22 0.85 2.00 2.841 (2) 166
O4—H4B⋯O2iv 0.85 1.93 2.754 (2) 163
O5—H5A⋯O4 0.85 2.02 2.838 (2) 163
O5—H5B⋯O6 0.85 2.05 2.901 (3) 171
O6—H6A⋯O8 0.85 2.02 2.831 (2) 161
O6—H6B⋯O7v 0.84 2.26 2.832 (2) 125
O7—H7⋯O5 0.84 1.98 2.799 (2) 166
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal bisphosphonates have been attracting closer attention in light of their important applications in industrial processes such as ion-exchange, catalysis and sorption (Clearfield et al., 2001, Clearfield, 1998, Fu et al., 2007). Metal bisphosphonates usually adopt layered or pillared layered structures (Fu et al., 2007, Mathew et al., 1998). Other structural types, such as 1-D and 3-D open networks, have also been prepared in order to study the properties of bisphosphonate solid materials (Lin et al., 2007, Fu et al., 2007). Most of the effective materials consist of open frameworks and microporous structures (Fu et al., 2007, Serre et al., 2006). In recent investigations, we studied the complexing properties of amide ester derivatives of (dichloromethylene)bisphosphonate, Cl2MBP (Jokiniemi et al., 2007, 2008). The introduction of various ester substituents into phosphonate groups can results in novel structures of metal bisphosphonates and lead to interesting functionalities. Of the numerous metal phosphonate compounds now known, only a small number have been prepared with alkali earth metals. We now present the crystal structure of the Ca(II) complex of the monoethyl ester derivative of Cl2MBP obtained by gel crystallization.

The title compound consists of two-dimensional layers parallel to the (100) plane. The Ca1 atom lies on the centre of symmetry with two symmetrically chelating (Cl2CP2O6Et)3- ligands and two aqua ligands in axial positions; the geometry is slightly distorted octahedron with Ca1–O bond lengths of 2.228 (1)–2.378 (1) Å (Table 1, Fig. 1). The three trans bond angles are 180.0°, while the cis bond angles range from 84.12 (5) to 95.88 (5)°. The aqua ligand O1 bridges Ca1 and the adjacent Ca2 atom with Ca···Ca distance of 4.4283 (4) Å. The Ca2 atom is seven-coordinated in distorted monocapped trigonal prismatic geometry and is coordinated by five phosphonate O atoms from three different (Cl2CP2O6Et)3- ligands. The coordination sphere is completed by two aqua ligands. The Ca2–O bond lengths are 2.316 (2)–2.586 (2) Å. The (Cl2CP2O6Et)3- ligand is coordinated to four Ca2+ cations through five O atoms forming two six-membered chelate rings with Ca1 and Ca2 atoms, and the P1 atom forms a four-membered chelate ring with the adjacent Ca2D atom (x, -y, z - 1/2). Thus, the two oxygen atoms (O11, O13) act as monoatomic bridges between two Ca atoms.

The layers are further connected by extensive hydrogen bonding (O···O 2.637 (2)–2.901 (3) Å, 125–177°) into a 3-D network with the interlayer distance of 15.2036 (2) Å (Fig. 2, Table 2). The O8 and C2 atoms of the acetone molecule, as well as the water molecule O7, are located on the individual two-fold rotation axis. The ethyl groups and chlorine atoms point out from the layers.

Related literature top

For applications of metal complexes of bisphosphonates, see: Clearfield et al. (2001); Clearfield (1998); Fu et al. (2007); Serre et al. (2006). For calcium bisphosphonate complexes, see: Lin et al. (2007); Mathew et al. (1998). For metal complexes of bisphosphonate ester derivatives, see: Jokiniemi et al. (2007, 2008).

Experimental top

Na3Cl2CP2O6Et (10.0 mg, 0.030 mmol) and CaCl2.2H2O (4.3 mg, 0.030 mmol) were dissolved separately in water (2.25 ml), the solutions were mixed, and tetramethoxysilane (TMOS 0.5 ml) was added. The two-phase system was shaken until homogeneous. After gel formation, a precipitant, acetone (1.0 ml), was added above the gel to induce crystallization. After about three months, colourless crystals suitable for X-ray analysis were formed uniformly throughout the gel as thin needles. The elemental analyses were performed several times and the results were consistent indicating that the acetone molecule and 3.5 water molecules were evaporated when the crystals were dried in air.

Refinement top

H atoms of the ethyl group and acetone molecule were placed at calculated positions in the riding-model approximation with C–H distances of 0.99 Å (methylene) and 0.98 Å (methyl), and with Uiso(H) = 1.5Ueq(C) or 1.2Ueq(C). H atoms of the aqua ligands and lattice water molecules were located in a difference map and treated as riding, with O–H bond lengths constrained to 0.84–0.99 Å and with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A part of the polymeric structure of the title compound showing the atomic numbering scheme and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines. Atoms labelled with suffixes A–F are at the symmetry positions (1/2 - x, 1/2 - y, -z), (1/2 - x, 1/2 + y, 1/2 - z), (x, -y, 1/2 + z), (x, -y, z - 1/2), (1/2 - x, y - 1/2, 1/2 - z) and (- x, y, 3/2 - z), respectively.
[Figure 2] Fig. 2. Packing of the title compound viewed along the c-axis showing the hydrogen bond interactions. CaO6 and CaO7 polyhedra are presented in light grey and PO3C tetrahedra in dark grey. Ethyl groups, chlorine atoms and H atoms of the acetone molecules are omitted for clarity.
Poly[[µ-aqua-aqua[µ4-ethyl (dichloromethylene)diphosphonato]sesquicalcium(II)] acetone hemisolvate 4.5-hydrate] top
Crystal data top
[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2OF(000) = 1968
Mr = 476.17Dx = 1.758 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 31118 reflections
a = 31.2205 (3) Åθ = 2.7–28.0°
b = 10.1546 (1) ŵ = 1.02 mm1
c = 11.6510 (1) ÅT = 150 K
β = 103.107 (1)°Needle, colourless
V = 3597.51 (6) Å30.25 × 0.15 × 0.10 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
4209 independent reflections
Radiation source: fine-focus sealed tube3617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ scans, and ω scans with κ offsetsθmax = 28.0°, θmin = 2.7°
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
h = 4040
Tmin = 0.823, Tmax = 0.905k = 1313
31118 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.02P)2 + 12P]
where P = (Fo2 + 2Fc2)/3
4209 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2OV = 3597.51 (6) Å3
Mr = 476.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.2205 (3) ŵ = 1.02 mm1
b = 10.1546 (1) ÅT = 150 K
c = 11.6510 (1) Å0.25 × 0.15 × 0.10 mm
β = 103.107 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4209 independent reflections
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
3617 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.905Rint = 0.055
31118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.02P)2 + 12P]
where P = (Fo2 + 2Fc2)/3
4209 reflectionsΔρmax = 0.47 e Å3
213 parametersΔρmin = 0.58 e Å3
Special details top

Experimental. These results are supported by the IR spectrum and TG analysis. Anal. Found: C, 9.30; H, 3.06%. Calc. for C3H11Cl2Ca1.5O9P2: C, 9.38; H, 2.89%. Main IR absorptions (KBr pellet, cm-1): 3385 (b,s), 2995 (w), 1648 (b,m), 1389 (m), 1213 (s), 1148 (s), 1105 (versus), 1082 (versus), 1048 (m), 1008 (m), 959 (m), 871 (m), 852 (w), 760 (m). 31P CP/MAS NMR: δP 7.4 and 5.1 p.p.m.. TGA (25–700 °C under a synthetic air): 25–180 °C 13.1% (calculated 14.1% for the loss of three water molecules). The observed total weight loss is 40.0% (calculated 41.1% if the final product is assumed to be a mixture of Ca(PO3)2 and CaO in a molar ratio of 2:1).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.25000.25000.00000.00999 (12)
Ca20.248223 (14)0.12782 (4)0.36375 (3)0.00930 (9)
Cl10.129792 (17)0.08747 (5)0.13650 (4)0.01375 (11)
Cl20.137474 (18)0.01918 (5)0.08762 (4)0.01548 (11)
P10.218448 (17)0.04904 (5)0.08794 (4)0.00900 (11)
P20.160183 (17)0.18410 (5)0.12307 (5)0.00960 (11)
O10.28281 (5)0.23098 (14)0.20444 (12)0.0126 (3)
H1A0.29110.32170.23180.015*
H1B0.31080.18300.20910.015*
O20.32098 (5)0.03608 (14)0.41612 (13)0.0129 (3)
H2A0.33530.04760.36390.019*
H2B0.31980.04670.42440.019*
O30.36311 (5)0.09774 (16)0.24321 (14)0.0178 (3)
H3A0.38990.12150.26830.027*
H3B0.36430.01980.21630.027*
O40.13454 (5)0.36331 (16)0.37057 (14)0.0180 (3)
H4A0.14720.30000.34300.027*
H4B0.15300.38640.43320.027*
O50.05044 (6)0.30916 (18)0.41409 (16)0.0269 (4)
H5A0.07750.31540.41420.040*
H5B0.04760.31180.48510.040*
O60.05040 (6)0.32700 (17)0.66254 (16)0.0238 (4)
H6A0.04050.25790.68830.036*
H6B0.02850.37650.63740.036*
O70.00000.4816 (2)0.25000.0224 (5)
H70.01890.43850.29850.034*
O80.00000.1357 (2)0.75000.0265 (6)
O110.24121 (5)0.03290 (14)0.00999 (12)0.0107 (3)
O120.23607 (5)0.03674 (14)0.21857 (12)0.0108 (3)
O130.21597 (5)0.18636 (14)0.04307 (12)0.0103 (3)
O210.18181 (5)0.26929 (14)0.04781 (13)0.0116 (3)
O220.17957 (5)0.18469 (14)0.25168 (12)0.0115 (3)
O230.10987 (5)0.21652 (15)0.10779 (13)0.0132 (3)
C10.16168 (7)0.0176 (2)0.06555 (17)0.0104 (4)
C210.08235 (8)0.2669 (2)0.0003 (2)0.0196 (5)
H21A0.06150.19820.03840.024*
H21B0.10060.29440.05480.024*
C220.05800 (9)0.3813 (3)0.0325 (3)0.0292 (6)
H22A0.04160.35410.09110.044*
H22B0.03740.41430.03800.044*
H22C0.07880.45110.06560.044*
C20.00000.0182 (3)0.75000.0228 (7)
C30.02303 (10)0.0568 (3)0.8273 (3)0.0394 (7)
H3C0.03170.00330.88370.059*
H3D0.00330.12440.87010.059*
H3E0.04930.09900.77910.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0143 (3)0.0066 (3)0.0097 (3)0.0003 (2)0.0041 (2)0.0006 (2)
Ca20.0130 (2)0.00660 (18)0.00840 (19)0.00024 (15)0.00261 (15)0.00003 (14)
Cl10.0156 (2)0.0112 (2)0.0157 (3)0.00233 (19)0.00603 (19)0.00042 (18)
Cl20.0205 (3)0.0151 (2)0.0094 (2)0.0024 (2)0.00041 (19)0.00142 (18)
P10.0129 (3)0.0059 (2)0.0088 (3)0.00034 (19)0.00368 (19)0.00012 (18)
P20.0122 (3)0.0072 (2)0.0097 (3)0.00102 (19)0.0030 (2)0.00008 (18)
O10.0177 (8)0.0088 (7)0.0112 (7)0.0003 (6)0.0030 (6)0.0011 (5)
O20.0160 (7)0.0083 (7)0.0154 (8)0.0001 (6)0.0054 (6)0.0010 (6)
O30.0171 (8)0.0164 (8)0.0199 (8)0.0005 (6)0.0045 (6)0.0000 (6)
O40.0205 (8)0.0176 (8)0.0152 (8)0.0029 (6)0.0027 (6)0.0036 (6)
O50.0227 (9)0.0291 (10)0.0296 (10)0.0008 (8)0.0074 (7)0.0014 (8)
O60.0200 (9)0.0214 (9)0.0297 (10)0.0012 (7)0.0053 (7)0.0032 (7)
O70.0205 (12)0.0243 (13)0.0216 (12)0.0000.0032 (10)0.000
O80.0306 (14)0.0174 (12)0.0344 (15)0.0000.0130 (11)0.000
O110.0159 (7)0.0068 (7)0.0109 (7)0.0000 (6)0.0057 (6)0.0007 (5)
O120.0146 (7)0.0086 (7)0.0092 (7)0.0005 (6)0.0027 (6)0.0010 (5)
O130.0137 (7)0.0072 (7)0.0103 (7)0.0009 (5)0.0030 (6)0.0011 (5)
O210.0155 (7)0.0068 (7)0.0135 (7)0.0009 (6)0.0052 (6)0.0003 (5)
O220.0146 (7)0.0095 (7)0.0102 (7)0.0017 (6)0.0025 (6)0.0010 (5)
O230.0130 (7)0.0128 (7)0.0138 (7)0.0040 (6)0.0031 (6)0.0019 (6)
C10.0134 (10)0.0085 (9)0.0095 (10)0.0008 (8)0.0031 (8)0.0006 (7)
C210.0190 (11)0.0221 (12)0.0155 (11)0.0052 (9)0.0009 (9)0.0015 (9)
C220.0262 (13)0.0223 (13)0.0356 (15)0.0100 (11)0.0002 (11)0.0030 (11)
C20.0166 (16)0.0189 (17)0.033 (2)0.0000.0050 (14)0.000
C30.0362 (16)0.0276 (15)0.061 (2)0.0062 (13)0.0253 (15)0.0149 (14)
Geometric parameters (Å, º) top
Ca1—O1i2.3778 (14)P2—O221.4834 (15)
Ca1—O12.3778 (14)P2—O211.4972 (15)
Ca1—O112.2278 (14)P2—O231.5750 (15)
Ca1—O11i2.2278 (14)P2—C11.823 (2)
Ca1—O21i2.3279 (15)O1—H1A0.9900
Ca1—O212.3279 (15)O1—H1B0.9900
Ca1—P2i3.4915 (5)O2—H2A0.8414
Ca1—P23.4915 (5)O2—H2B0.8477
Ca1—P1i3.4204 (5)O3—H3A0.8560
Ca1—P13.4204 (5)O3—H3B0.8554
Ca1—Ca2ii4.1476 (4)O4—H4A0.8541
Ca1—Ca2iii4.1476 (4)O4—H4B0.8536
Ca2—O12.5726 (15)O5—H5A0.8468
Ca2—O22.4024 (15)O5—H5B0.8525
Ca2—O11iv2.4049 (15)O6—H6A0.8481
Ca2—O122.3466 (14)O6—H6B0.8448
Ca2—O13iii2.3320 (15)O7—H70.8416
Ca2—O13iv2.5858 (15)O8—C21.193 (4)
Ca2—O222.3158 (15)O11—Ca2ii2.4049 (15)
Ca2—P1iv3.0705 (6)O13—Ca2vi2.3320 (15)
Ca2—P1iii3.4498 (6)O13—Ca2ii2.5858 (15)
Ca2—P23.4999 (7)O23—C211.442 (3)
Ca2—Ca2v4.0111 (8)C21—C221.482 (3)
Ca2—Ca1vi4.1476 (4)C21—H21A0.9900
Ca2—H2A2.8382C21—H21B0.9900
Ca2—H2B2.8142C22—H22A0.9800
Cl1—C11.785 (2)C22—H22B0.9800
Cl2—C11.773 (2)C22—H22C0.9800
P1—O131.4851 (15)C2—C3vii1.484 (3)
P1—O121.5016 (15)C2—C31.484 (3)
P1—O111.5216 (15)C3—H3C0.9800
P1—C11.860 (2)C3—H3D0.9800
P1—Ca2ii3.0705 (6)C3—H3E0.9800
P1—Ca2vi3.4498 (6)
O21i—Ca1—O21180.00 (6)P2—Ca2—Ca2v114.135 (18)
O21i—Ca1—O1193.40 (5)O22—Ca2—Ca1vi112.14 (4)
O21—Ca1—O1186.60 (5)O13iii—Ca2—Ca1vi127.37 (4)
O21i—Ca1—O11i86.60 (5)O2—Ca2—Ca1vi67.31 (4)
O21—Ca1—O11i93.40 (5)O12—Ca2—Ca1vi66.62 (4)
O11—Ca1—O11i180.00 (8)O11iv—Ca2—Ca1vi25.39 (3)
O21i—Ca1—O1i88.67 (5)O1—Ca2—Ca1vi132.96 (4)
O21—Ca1—O1i91.33 (5)O13iv—Ca2—Ca1vi82.95 (3)
O11—Ca1—O1i95.88 (5)P1iv—Ca2—Ca1vi54.110 (11)
O11i—Ca1—O1i84.12 (5)P1iii—Ca2—Ca1vi147.146 (14)
O21i—Ca1—O191.33 (5)P2—Ca2—Ca1vi113.429 (13)
O21—Ca1—O188.67 (5)Ca2v—Ca2—Ca1vi105.887 (14)
O11—Ca1—O184.12 (5)O22—Ca2—H2A146.7
O11i—Ca1—O195.88 (5)O13iii—Ca2—H2A82.8
O1i—Ca1—O1180.00 (11)O2—Ca2—H2A15.8
O21i—Ca1—P2i19.02 (4)O12—Ca2—H2A78.1
O21—Ca1—P2i160.98 (4)O11iv—Ca2—H2A92.6
O11—Ca1—P2i109.33 (4)O1—Ca2—H2A63.8
O11i—Ca1—P2i70.67 (4)O13iv—Ca2—H2A127.9
O1i—Ca1—P2i77.10 (4)P1iv—Ca2—H2A113.6
O1—Ca1—P2i102.90 (4)P1iii—Ca2—H2A91.1
O21i—Ca1—P2160.98 (4)P2—Ca2—H2A128.7
O21—Ca1—P219.02 (4)Ca2v—Ca2—H2A108.8
O11—Ca1—P270.67 (4)Ca1vi—Ca2—H2A78.7
O11i—Ca1—P2109.33 (4)O22—Ca2—H2B151.6
O1i—Ca1—P2102.90 (4)O13iii—Ca2—H2B97.1
O1—Ca1—P277.10 (4)O2—Ca2—H2B16.4
P2i—Ca1—P2180.000 (18)O12—Ca2—H2B73.8
O21i—Ca1—P1i70.24 (4)O11iv—Ca2—H2B65.8
O21—Ca1—P1i109.76 (4)O1—Ca2—H2B89.9
O11—Ca1—P1i160.29 (4)O13iv—Ca2—H2B112.0
O11i—Ca1—P1i19.71 (4)P1iv—Ca2—H2B89.9
O1i—Ca1—P1i73.49 (4)P1iii—Ca2—H2B111.4
O1—Ca1—P1i106.51 (4)P2—Ca2—H2B137.6
P2i—Ca1—P1i52.709 (12)Ca2v—Ca2—H2B108.2
P2—Ca1—P1i127.291 (12)Ca1vi—Ca2—H2B51.7
O21i—Ca1—P1109.76 (4)H2A—Ca2—H2B27.5
O21—Ca1—P170.24 (4)O13—P1—O12114.38 (8)
O11—Ca1—P119.71 (4)O13—P1—O11107.30 (8)
O11i—Ca1—P1160.29 (4)O12—P1—O11116.49 (8)
O1i—Ca1—P1106.51 (4)O13—P1—C1108.70 (9)
O1—Ca1—P173.49 (4)O12—P1—C1103.32 (9)
P2i—Ca1—P1127.291 (12)O11—P1—C1106.05 (9)
P2—Ca1—P152.709 (12)O13—P1—Ca2ii57.15 (6)
P1i—Ca1—P1180.000 (17)O12—P1—Ca2ii140.52 (6)
O21i—Ca1—Ca2ii76.36 (4)O11—P1—Ca2ii50.37 (6)
O21—Ca1—Ca2ii103.64 (4)C1—P1—Ca2ii116.00 (7)
O11—Ca1—Ca2ii27.57 (4)O12—P1—Ca2vi83.46 (6)
O11i—Ca1—Ca2ii152.43 (4)O11—P1—Ca2vi116.94 (6)
O1i—Ca1—Ca2ii74.12 (4)C1—P1—Ca2vi127.72 (7)
O1—Ca1—Ca2ii105.88 (4)Ca2ii—P1—Ca2vi75.679 (16)
P2i—Ca1—Ca2ii87.845 (10)O13—P1—Ca1136.36 (6)
P2—Ca1—Ca2ii92.155 (10)O12—P1—Ca199.53 (6)
P1i—Ca1—Ca2ii133.342 (10)C1—P1—Ca187.98 (6)
P1—Ca1—Ca2ii46.658 (10)Ca2ii—P1—Ca179.232 (14)
O21i—Ca1—Ca2iii103.64 (4)Ca2vi—P1—Ca1142.808 (18)
O21—Ca1—Ca2iii76.36 (4)O22—P2—O21117.03 (9)
O11—Ca1—Ca2iii152.43 (4)O22—P2—O23106.35 (8)
O11i—Ca1—Ca2iii27.57 (4)O21—P2—O23112.56 (8)
O1i—Ca1—Ca2iii105.88 (4)O22—P2—C1109.66 (9)
O1—Ca1—Ca2iii74.12 (4)O21—P2—C1105.54 (9)
P2i—Ca1—Ca2iii92.155 (10)O23—P2—C1105.09 (9)
P2—Ca1—Ca2iii87.845 (10)O22—P2—Ca1103.43 (6)
P1i—Ca1—Ca2iii46.658 (10)O23—P2—Ca1141.89 (6)
P1—Ca1—Ca2iii133.342 (10)C1—P2—Ca186.38 (7)
Ca2ii—Ca1—Ca2iii180.000 (14)O21—P2—Ca2100.78 (6)
O22—Ca2—O13iii110.21 (5)O23—P2—Ca2134.96 (6)
O22—Ca2—O2160.19 (5)C1—P2—Ca293.57 (7)
O13iii—Ca2—O282.51 (5)Ca1—P2—Ca278.603 (13)
O22—Ca2—O1278.08 (5)Ca1—O1—Ca2126.86 (6)
O13iii—Ca2—O12153.36 (5)Ca1—O1—H1A105.6
O2—Ca2—O1284.02 (5)Ca2—O1—H1A105.6
O22—Ca2—O11iv110.33 (5)Ca1—O1—H1B105.6
O13iii—Ca2—O11iv109.29 (5)Ca2—O1—H1B105.6
O2—Ca2—O11iv77.85 (5)H1A—O1—H1B106.1
O12—Ca2—O11iv90.09 (5)Ca2—O2—H2A112.9
O22—Ca2—O188.74 (5)Ca2—O2—H2B110.5
O13iii—Ca2—O176.76 (5)H2A—O2—H2B105.3
O2—Ca2—O179.26 (5)H3A—O3—H3B105.4
O12—Ca2—O178.20 (5)H4A—O4—H4B104.4
O11iv—Ca2—O1155.24 (5)H5A—O5—H5B108.6
O22—Ca2—O13iv85.30 (5)H6A—O6—H6B106.6
O13iii—Ca2—O13iv70.81 (6)P1—O11—Ca1130.70 (8)
O2—Ca2—O13iv113.76 (5)P1—O11—Ca2ii100.46 (7)
O12—Ca2—O13iv135.83 (5)Ca1—O11—Ca2ii127.05 (6)
O11iv—Ca2—O13iv57.92 (5)P1—O12—Ca2138.76 (9)
O1—Ca2—O13iv142.51 (5)P1—O13—Ca2vi127.93 (8)
O22—Ca2—P1iv97.16 (4)P1—O13—Ca2ii94.01 (7)
O13iii—Ca2—P1iv91.17 (4)Ca2vi—O13—Ca2ii109.19 (6)
O2—Ca2—P1iv97.71 (4)P2—O21—Ca1130.53 (8)
O12—Ca2—P1iv113.39 (4)P2—O22—Ca2133.01 (9)
O11iv—Ca2—P1iv29.16 (3)C21—O23—P2123.71 (14)
O1—Ca2—P1iv167.82 (4)Cl2—C1—Cl1108.43 (11)
O13iv—Ca2—P1iv28.85 (3)Cl2—C1—P1108.63 (11)
O22—Ca2—P1iii93.51 (4)Cl1—C1—P1109.34 (11)
O13iii—Ca2—P1iii19.85 (4)Cl2—C1—P2108.74 (11)
O2—Ca2—P1iii95.43 (4)Cl1—C1—P2108.71 (11)
O12—Ca2—P1iii142.04 (4)P1—C1—P2112.90 (11)
O11iv—Ca2—P1iii127.05 (4)O23—C21—C22107.30 (19)
O1—Ca2—P1iii64.53 (3)O23—C21—H21A110.3
O13iv—Ca2—P1iii78.92 (3)C22—C21—H21A110.3
P1iv—Ca2—P1iii104.321 (16)O23—C21—H21B110.3
O22—Ca2—P218.06 (4)C22—C21—H21B110.3
O13iii—Ca2—P2116.57 (4)H21A—C21—H21B108.5
O2—Ca2—P2142.41 (4)C21—C22—H22A109.5
O12—Ca2—P264.50 (4)C21—C22—H22B109.5
O11iv—Ca2—P2119.83 (4)H22A—C22—H22B109.5
O1—Ca2—P274.77 (4)C21—C22—H22C109.5
O13iv—Ca2—P2103.35 (3)H22A—C22—H22C109.5
P1iv—Ca2—P2112.947 (18)H22B—C22—H22C109.5
P1iii—Ca2—P297.378 (15)O8—C2—C3vii120.89 (17)
O22—Ca2—Ca2v98.51 (4)O8—C2—C3120.89 (17)
O13iii—Ca2—Ca2v37.50 (4)C3vii—C2—C3118.2 (3)
O2—Ca2—Ca2v100.60 (4)C2—C3—H3C109.5
O12—Ca2—Ca2v169.12 (4)C2—C3—H3D109.5
O11iv—Ca2—Ca2v81.36 (4)H3C—C3—H3D109.5
O1—Ca2—Ca2v112.23 (4)C2—C3—H3E109.5
O13iv—Ca2—Ca2v33.30 (3)H3C—C3—H3E109.5
P1iv—Ca2—Ca2v56.443 (13)H3D—C3—H3E109.5
P1iii—Ca2—Ca2v47.877 (12)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y1/2, z+1/2; (vii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.991.812.794 (2)171
O1—H1A···O12iii0.991.832.637 (2)137
O2—H2A···O30.841.882.717 (2)172
O2—H2B···O21vi0.851.902.746 (2)177
O3—H3A···O6v0.861.932.782 (2)175
O3—H3B···O4vi0.861.892.734 (2)169
O4—H4A···O220.852.002.841 (2)166
O4—H4B···O2v0.851.932.754 (2)163
O5—H5A···O40.852.022.838 (2)163
O5—H5B···O60.852.052.901 (3)171
O6—H6A···O80.852.022.831 (2)161
O6—H6B···O7viii0.842.262.832 (2)125
O7—H7···O50.841.982.799 (2)166
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y1/2, z+1/2; (viii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5C3H6O·4.5H2O
Mr476.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)31.2205 (3), 10.1546 (1), 11.6510 (1)
β (°) 103.107 (1)
V3)3597.51 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(XPREP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.823, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
31118, 4209, 3617
Rint0.055
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.10
No. of reflections4209
No. of parameters213
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.02P)2 + 12P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.47, 0.58

Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Selected bond lengths (Å) top
Ca1—O12.3778 (14)Ca2—O11i2.4049 (15)
Ca1—O112.2278 (14)Ca2—O122.3466 (14)
Ca1—O212.3279 (15)Ca2—O13ii2.3320 (15)
Ca2—O12.5726 (15)Ca2—O13i2.5858 (15)
Ca2—O22.4024 (15)Ca2—O222.3158 (15)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.991.812.794 (2)170.7
O1—H1A···O12ii0.991.832.637 (2)136.6
O2—H2A···O30.841.882.717 (2)171.5
O2—H2B···O21iii0.851.902.746 (2)176.8
O3—H3A···O6iv0.861.932.782 (2)175.4
O3—H3B···O4iii0.861.892.734 (2)169.3
O4—H4A···O220.852.002.841 (2)166.2
O4—H4B···O2iv0.851.932.754 (2)162.5
O5—H5A···O40.852.022.838 (2)162.6
O5—H5B···O60.852.052.901 (3)171.4
O6—H6A···O80.852.022.831 (2)160.5
O6—H6B···O7v0.842.262.832 (2)124.8
O7—H7···O50.841.982.799 (2)165.6
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x, y+1, z+1.
 

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClearfield, A. (1998). Progress in Inorganic Chemistry: Metal Phosphonate Chemistry, Vol 47, edited by K. D. Karlin, pp. 371–510. New York: Wiley.  Google Scholar
First citationClearfield, A., Krishnamohan Sharma, C. V. & Zhang, B. (2001). Chem. Mater. 13, 3099–3112.  Web of Science CrossRef CAS Google Scholar
First citationFu, R., Hu, S. & Wu, X. (2007). Cryst. Growth Des. 7, 1134–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationJokiniemi, J., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2008). CrystEngComm, 10, 1011–1017.  Web of Science CSD CrossRef CAS Google Scholar
First citationJokiniemi, J., Vuokila-Laine, E., Peräniemi, S., Vepsäläinen, J. J. & Ahlgrén, M. (2007). CrystEngComm, 9, 158–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, L., Zhang, T.-J., Fan, Y.-T., Ding, D.-G. & Hou, H.-W. (2007). J. Mol. Struct. 837, 107–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMathew, M., Fowler, B. O., Breuer, E., Golomb, G., Alferiev, I. S. & Eidelman, N. (1998). Inorg. Chem. 37, 6485–6494.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSerre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., Bein, T., Haouas, M., Taulelle, F. & Férey, G. (2006). Chem. Mater. 18, 1451–1457.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m436-m437
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds