metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Di­methyl-4,4′-bi-1,3-thia­zole-κ2N,N′)bis­(thio­cyanato-κS)mercury(II)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 February 2009; accepted 25 February 2009; online 6 March 2009)

The HgII atom in the title compound, [Hg(SCN)2(C8H8N2S2)], is chelated by the bidentate heterocycle through the N atoms and is coordinated by the S atoms of two thiocyanate anions, resulting in a considerably distorted tetra­hedral coordination geometry.

Related literature

There are several examples of mercuric thio­cyanate–α,α′-dimine type of adducts which exist as four-coordinate, tetra­hedral mol­ecules. For the 4,4′,5,5′-tetra­methyl-2,2′-biimidazole adduct, see: Mahjoub et al. (2003[Mahjoub, A. R., Ramazani, A. & Morsali, A. (2003). Z. Kristallogr. New Cryst. Struct. 218, 435-436.]); Morsali (2006[Morsali, A. (2006). J. Coord. Chem. 59, 1015-1024.]). For the 2,2′-diamino-4,4′-bithia­zole adduct, see: Morsali et al. (2003[Morsali, A., Payheghader, M., Poorheravi, M. R. & Jamali, F. (2003). Z. Anorg. Allg. Chem. 629, 1627-1631.]). For the 2,2′-biquinoline adduct, see: Morsali et al. (2004[Morsali, A., Mahjoub, A. R. & Ramazani, A. (2004). J. Coord. Chem. 57, 347-352.]); Ramazani et al. (2004[Ramazani, A., Morsali, A. & Haji-Abolfath, A. (2004). Z. Kristallogr. New Cryst. Struct. 219, 245-246.]). For the 2,2′-diphenyl-4,4′-bithia­zole adduct, see: Mahjoub & Morsali (2003[Mahjoub, A. & Morsali, A. (2003). J. Coord. Chem. 56, 779-785.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(NCS)2(C8H8N2S2)]

  • Mr = 513.03

  • Monoclinic, P 21 /c

  • a = 17.3764 (3) Å

  • b = 12.0534 (2) Å

  • c = 7.0601 (1) Å

  • β = 100.676 (1)°

  • V = 1453.10 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.16 mm−1

  • T = 118 K

  • 0.22 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.274, Tmax = 0.640

  • 10030 measured reflections

  • 3330 independent reflections

  • 2982 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.04

  • 3330 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—S3 2.413 (1)
Hg1—S4 2.421 (1)
Hg1—N1 2.430 (3)
Hg1—N2 2.476 (3)
S3—Hg1—S4 149.25 (4)
S3—Hg1—N1 95.66 (8)
S3—Hg1—N2 105.84 (8)
S4—Hg1—N1 113.49 (8)
S4—Hg1—N2 94.04 (8)
N1—Hg1—N2 69.1 (1)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

There are several examples of mercuric thiocyanate–α,α'-dimine type of adducts which exist as four-coordinate, tetrahedral molecules. For the 4,4',5,5'-tetramethyl-2,2'-biimidazole adduct, see: Mahjoub et al. (2003); Morsali (2006). For the 2,2'-diamino-4,4'-bithiazole adduct, see: Morsali et al. (2003). For the 2,2'-biquinoline adduct, see: Morsali et al. (2004); Ramazani et al. (2004). For the 2,2'-diphenyl-4,4'-bithiazole adduct, see: Mahjoub & Morsali (2003).

Experimental top

A solution of 2,2'-dimethyl-4,4'-bithiazole (0.13 g, 0.66 mmol) in methanol (10 ml) was added to a solution of mercuric thiocyanate (0.21 g, 0.66 mmol) in methanol (5 ml). Crystals were obtained by diffusing the methanol solution into DMSO for a week (yield: 80%; m.p. 456 K).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

The crystal diffracted strongly owing to the extremely heavy metal atom; however, its presence introduced severe absorption problems that could not be corrected analytically as the crystal did not have regular faces. The final difference Fourier map had a large peak/hole in the vicinity of the mercury atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Hg(SCN)2(C10H8N2S2); ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius.
(2,2'-Dimethyl-4,4'-bi-1,3-thiazole- κ2N,N')bis(thiocyanato-κS)mercury(II) top
Crystal data top
[Hg(NCS)2(C8H8N2S2)]F(000) = 960
Mr = 513.03Dx = 2.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4390 reflections
a = 17.3764 (3) Åθ = 2.4–28.3°
b = 12.0534 (2) ŵ = 11.16 mm1
c = 7.0601 (1) ÅT = 118 K
β = 100.676 (1)°Block, colorless
V = 1453.10 (4) Å30.22 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3330 independent reflections
Radiation source: fine-focus sealed tube2982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.274, Tmax = 0.640k = 1515
10030 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0213P)2 + 2.1611P]
where P = (Fo2 + 2Fc2)/3
3330 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
[Hg(NCS)2(C8H8N2S2)]V = 1453.10 (4) Å3
Mr = 513.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.3764 (3) ŵ = 11.16 mm1
b = 12.0534 (2) ÅT = 118 K
c = 7.0601 (1) Å0.22 × 0.06 × 0.04 mm
β = 100.676 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2982 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.640Rint = 0.030
10030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.04Δρmax = 1.17 e Å3
3330 reflectionsΔρmin = 1.32 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.272849 (8)0.578858 (12)0.74895 (2)0.01665 (6)
S10.37984 (5)0.20867 (8)0.65772 (15)0.0156 (2)
S20.03250 (6)0.34937 (8)0.73374 (16)0.0192 (2)
S30.34553 (7)0.58014 (9)1.07522 (18)0.0287 (3)
S40.20772 (7)0.68035 (9)0.46884 (17)0.0241 (2)
N10.30803 (18)0.3905 (3)0.6768 (5)0.0132 (7)
N20.16170 (18)0.4504 (3)0.7495 (5)0.0147 (7)
N30.4178 (2)0.7908 (3)1.1095 (6)0.0317 (9)
N40.1421 (2)0.4986 (3)0.2409 (6)0.0270 (8)
C10.4453 (2)0.4223 (3)0.6435 (7)0.0221 (9)
H1A0.42740.49000.57190.033*
H1B0.48070.38150.57550.033*
H1C0.47300.44210.77290.033*
C20.3765 (2)0.3514 (3)0.6592 (6)0.0149 (8)
C30.2837 (2)0.2028 (3)0.6837 (6)0.0148 (8)
H30.25490.13640.69120.018*
C40.2545 (2)0.3082 (3)0.6921 (6)0.0128 (8)
C50.1758 (2)0.3395 (3)0.7151 (5)0.0124 (7)
C60.1123 (2)0.2727 (3)0.7042 (6)0.0163 (8)
H60.11210.19490.68340.020*
C70.0890 (2)0.4686 (3)0.7608 (6)0.0158 (8)
C80.0558 (2)0.5793 (3)0.7950 (7)0.0207 (9)
H8A0.08310.60900.91860.031*
H8B0.00010.57160.79800.031*
H8C0.06260.63010.69100.031*
C90.3879 (2)0.7054 (3)1.0890 (6)0.0201 (9)
C100.1696 (2)0.5709 (3)0.3354 (6)0.0188 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01515 (8)0.01369 (8)0.01971 (10)0.00045 (5)0.00039 (6)0.00147 (6)
S10.0154 (5)0.0132 (4)0.0188 (5)0.0017 (3)0.0049 (4)0.0005 (4)
S20.0120 (5)0.0188 (5)0.0271 (6)0.0016 (4)0.0043 (4)0.0004 (4)
S30.0367 (6)0.0183 (5)0.0249 (6)0.0089 (4)0.0108 (5)0.0058 (5)
S40.0294 (6)0.0140 (5)0.0254 (6)0.0040 (4)0.0044 (5)0.0029 (4)
N10.0118 (16)0.0143 (15)0.0133 (17)0.0004 (12)0.0023 (12)0.0001 (13)
N20.0144 (16)0.0150 (16)0.0147 (18)0.0021 (12)0.0029 (13)0.0006 (13)
N30.036 (2)0.025 (2)0.031 (2)0.0093 (17)0.0018 (18)0.0027 (18)
N40.028 (2)0.0228 (19)0.027 (2)0.0006 (16)0.0031 (16)0.0014 (17)
C10.0134 (19)0.018 (2)0.035 (3)0.0010 (15)0.0055 (18)0.0017 (19)
C20.0156 (19)0.0140 (18)0.014 (2)0.0022 (14)0.0011 (15)0.0001 (16)
C30.0145 (19)0.0154 (19)0.015 (2)0.0006 (14)0.0037 (15)0.0014 (16)
C40.0134 (18)0.0146 (18)0.0099 (19)0.0005 (14)0.0013 (14)0.0004 (15)
C50.0137 (18)0.0140 (18)0.0092 (19)0.0008 (14)0.0010 (14)0.0022 (15)
C60.0129 (18)0.0169 (19)0.020 (2)0.0005 (14)0.0050 (15)0.0002 (17)
C70.0174 (19)0.0133 (18)0.017 (2)0.0022 (15)0.0037 (15)0.0009 (16)
C80.018 (2)0.018 (2)0.027 (2)0.0052 (16)0.0064 (17)0.0023 (18)
C90.017 (2)0.021 (2)0.022 (2)0.0007 (16)0.0020 (16)0.0014 (18)
C100.0113 (19)0.019 (2)0.026 (2)0.0012 (15)0.0019 (16)0.0042 (18)
Geometric parameters (Å, º) top
Hg1—S32.413 (1)N4—C101.146 (6)
Hg1—S42.421 (1)C1—C21.490 (5)
Hg1—N12.430 (3)C1—H1A0.9800
Hg1—N22.476 (3)C1—H1B0.9800
S1—C21.721 (4)C1—H1C0.9800
S1—C31.716 (4)C3—C41.374 (5)
S2—C61.711 (4)C3—H30.9500
S2—C71.731 (4)C4—C51.455 (5)
S3—C91.675 (4)C5—C61.356 (5)
S4—C101.684 (4)C6—H60.9500
N1—C21.308 (5)C7—C81.491 (5)
N1—C41.379 (5)C8—H8A0.9800
N2—C71.299 (5)C8—H8B0.9800
N2—C51.389 (5)C8—H8C0.9800
N3—C91.150 (5)
S3—Hg1—S4149.25 (4)C1—C2—S1123.0 (3)
S3—Hg1—N195.66 (8)C4—C3—S1110.0 (3)
S3—Hg1—N2105.84 (8)C4—C3—H3125.0
S4—Hg1—N1113.49 (8)S1—C3—H3125.0
S4—Hg1—N294.04 (8)C3—C4—N1113.7 (3)
N1—Hg1—N269.1 (1)C3—C4—C5127.4 (3)
C2—S1—C390.37 (19)N1—C4—C5118.9 (3)
C6—S2—C790.33 (19)C6—C5—N2114.4 (3)
C9—S3—Hg1102.01 (16)C6—C5—C4127.7 (4)
C10—S4—Hg197.89 (15)N2—C5—C4117.9 (3)
C2—N1—C4112.8 (3)C5—C6—S2110.0 (3)
C2—N1—Hg1128.7 (3)C5—C6—H6125.0
C4—N1—Hg1117.1 (2)S2—C6—H6125.0
C7—N2—C5112.2 (3)N2—C7—C8124.8 (4)
C7—N2—Hg1131.5 (3)N2—C7—S2113.0 (3)
C5—N2—Hg1116.0 (2)C8—C7—S2122.2 (3)
C2—C1—H1A109.5C7—C8—H8A109.5
C2—C1—H1B109.5C7—C8—H8B109.5
H1A—C1—H1B109.5H8A—C8—H8B109.5
C2—C1—H1C109.5C7—C8—H8C109.5
H1A—C1—H1C109.5H8A—C8—H8C109.5
H1B—C1—H1C109.5H8B—C8—H8C109.5
N1—C2—C1123.8 (3)N3—C9—S3176.2 (4)
N1—C2—S1113.1 (3)N4—C10—S4177.9 (4)
S4—Hg1—S3—C925.10 (19)C2—S1—C3—C40.0 (3)
N1—Hg1—S3—C9136.75 (17)S1—C3—C4—N10.4 (4)
N2—Hg1—S3—C9153.45 (17)S1—C3—C4—C5179.5 (3)
S3—Hg1—S4—C10173.66 (15)C2—N1—C4—C30.7 (5)
N1—Hg1—S4—C1026.10 (17)Hg1—N1—C4—C3168.8 (3)
N2—Hg1—S4—C1042.80 (16)C2—N1—C4—C5179.2 (3)
S3—Hg1—N1—C267.8 (3)Hg1—N1—C4—C511.1 (4)
S4—Hg1—N1—C2102.2 (3)C7—N2—C5—C61.3 (5)
N2—Hg1—N1—C2172.6 (4)Hg1—N2—C5—C6176.0 (3)
S3—Hg1—N1—C498.2 (3)C7—N2—C5—C4177.8 (3)
S4—Hg1—N1—C491.8 (3)Hg1—N2—C5—C43.1 (4)
N2—Hg1—N1—C46.6 (3)C3—C4—C5—C610.6 (7)
S3—Hg1—N2—C798.2 (4)N1—C4—C5—C6169.5 (4)
S4—Hg1—N2—C758.1 (4)C3—C4—C5—N2170.4 (4)
N1—Hg1—N2—C7171.8 (4)N1—C4—C5—N29.5 (5)
S3—Hg1—N2—C588.4 (3)N2—C5—C6—S20.9 (4)
S4—Hg1—N2—C5115.3 (3)C4—C5—C6—S2178.1 (3)
N1—Hg1—N2—C51.7 (2)C7—S2—C6—C50.3 (3)
C4—N1—C2—C1178.9 (4)C5—N2—C7—C8179.5 (4)
Hg1—N1—C2—C112.4 (6)Hg1—N2—C7—C85.8 (6)
C4—N1—C2—S10.6 (4)C5—N2—C7—S21.0 (4)
Hg1—N1—C2—S1167.11 (18)Hg1—N2—C7—S2174.69 (19)
C3—S1—C2—N10.3 (3)C6—S2—C7—N20.4 (3)
C3—S1—C2—C1179.2 (4)C6—S2—C7—C8179.9 (4)

Experimental details

Crystal data
Chemical formula[Hg(NCS)2(C8H8N2S2)]
Mr513.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)118
a, b, c (Å)17.3764 (3), 12.0534 (2), 7.0601 (1)
β (°) 100.676 (1)
V3)1453.10 (4)
Z4
Radiation typeMo Kα
µ (mm1)11.16
Crystal size (mm)0.22 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.274, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
10030, 3330, 2982
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.04
No. of reflections3330
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 1.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Hg1—S32.413 (1)Hg1—N12.430 (3)
Hg1—S42.421 (1)Hg1—N22.476 (3)
S3—Hg1—S4149.25 (4)S4—Hg1—N1113.49 (8)
S3—Hg1—N195.66 (8)S4—Hg1—N294.04 (8)
S3—Hg1—N2105.84 (8)N1—Hg1—N269.1 (1)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMahjoub, A. & Morsali, A. (2003). J. Coord. Chem. 56, 779–785.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahjoub, A. R., Ramazani, A. & Morsali, A. (2003). Z. Kristallogr. New Cryst. Struct. 218, 435–436.  CAS Google Scholar
First citationMorsali, A. (2006). J. Coord. Chem. 59, 1015–1024.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A., Mahjoub, A. R. & Ramazani, A. (2004). J. Coord. Chem. 57, 347–352.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A., Payheghader, M., Poorheravi, M. R. & Jamali, F. (2003). Z. Anorg. Allg. Chem. 629, 1627–1631.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamazani, A., Morsali, A. & Haji-Abolfath, A. (2004). Z. Kristallogr. New Cryst. Struct. 219, 245–246.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds