organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3,5,5-Tetra­methyl-3,5-disila-4,10-dioxa­tetra­cyclo­[5.5.1.02,6.08,12]tri­decane-9,11-dione

aLaboratory of Adhesives and in-situ Polymerization Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, Sichuan, People's Republic of China
*Correspondence e-mail: zjybuct@gmail.com

(Received 25 February 2009; accepted 12 March 2009; online 19 March 2009)

The title compound, C13H20O4Si2, is a siloxane-functionalized norbornane anhydride. Both five-membered heterocyclic rings of the mol­ecule have a planar structure, whereas the two five-membered aliphatic rings assume envelope conformations. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis and curing properties with the epoxy resin of silylnorbornane anhydrides, see: Eddy et al. (1990[Eddy, V. J., Hallgren, J. E. & Colborn, R. E. (1990). J. Polym. Sci. Part A Polym. Chem. 28, 2417-2426.]); Ryang (1983[Ryang, H.-S. (1983). US Patent No. 4 381 396.]). For the preparation of the title complex by reacting 1,1,3,3-tetramethyldisiloxane and 5-norbornene-2,3-dicarb­ox­ylic acid anhydride in the presence of a platinum catalyst, see: Buese (1986[Buese, M. A. (1986). US Patent No. 4 598 135.]); Eddy & Hallgren (1985[Eddy, V. J. & Hallgren, J. E. (1985). US Patent No. 4 542 226.]); Ryang (1983[Ryang, H.-S. (1983). US Patent No. 4 381 396.]); Swint & Buese (1991[Swint, S. A. & Buese, M. A. (1991). J. Organomet. Chem. 402, 145-153.]). In this reaction, the unsaturated anhydride was hydrosilylated with silicon hydride, see: Eddy & Hallgren (1987[Eddy, V. J. & Hallgren, J. E. (1987). J. Org. Chem. 52, 1903-1906.]); Lewis & Uriarte (1990[Lewis, L. N. & Uriarte, R. J. (1990). Organometallics, 9, 621-625.]); Lewis (1990[Lewis, L. N. (1990). J. Am. Chem. Soc. 112, 5998-6004.]); Onopchenko & Sabourin (1987[Onopchenko, A. & Sabourin, E. T. (1987). J. Org. Chem. 52, 4118-4121.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20O4Si2

  • Mr = 296.47

  • Monoclinic, P 21 /n

  • a = 8.0475 (16) Å

  • b = 12.047 (2) Å

  • c = 15.361 (3) Å

  • β = 95.84 (3)°

  • V = 1481.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.77 × 0.55 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.833, Tmax = 0.908

  • 6539 measured reflections

  • 3398 independent reflections

  • 2921 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 1.15

  • 3398 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O3i 0.98 2.56 3.432 (2) 149
C12—H12C⋯O3ii 0.98 2.57 3.443 (2) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we are interested in the synthesis and curing properties with epoxy resin of silylnorbornane anhydrides. The cured products show improved thermal and physical properties as compared to conventional curing agents (Eddy et al., 1990; Ryang, 1983). The title complex was provided by reacting 1,1,3,3-tetramethyldisiloxane and 5-norbornene-2,3-dicarboxylic acid anhydride in the presence of a platinum catalyst (Buese, 1986; Eddy & Hallgren, 1985; Ryang, 1983; Swint & Buese,1991). In this reaction, the unsaturated anhydride was hydrosilylated with silicon hydride (Eddy & Hallgren, 1987; Lewis & Uriarte, 1990; Lewis, 1990; Onopchenko & Sabourin, 1987).

In the title compound, the two Si atoms in tetramethyldisiloxane are linked into a ring by carbon-silicon linkages by two C atoms (Fig. 1). Both five-membered heterocyclic rings of the molecule have planar structure, whereas two five-membered aliphatic rings assume the envelope conformation. The weak intermolecular C—H···O hydrogen bonding presents in the crystal structure (Table 1).

Related literature top

For general background, see: Buese (1986); Eddy & Hallgren (1985; 1987); Eddy et al. (1990); Ryang (1983); Swint & Buese (1991); Lewis & Uriarte (1990); Lewis (1990); Onopchenko & Sabourin (1987).

Experimental top

Synthetic reaction was performed in refluxing toluene under hermetic condition. Toluene was dried over appropriate drying agent and distilled prior to use. There was added 10 drops platinum catalyst to a mixture while it was being stirred of 36.08 g (0.22 mole) of 5-norbornene-2,3- dicarboxylic acid anhydride, 13.4 g (0.1 mole) of 1,1,3,3-tetramethyldisiloxane and 150 ml of toluene. The resulting mixture was heated to 70°C for 8 h and then 100°C overnight. After cooling, filtration, removal of the solvent under vacuum and addition of dry diethyl ether resulted in the precipitation of white powder. Colourless crystals of the title compound suitable for X-ray structure analysis were obtained by crystallization in appropriate solvent.

Refinement top

All H atoms were fixed geometrically and treated as riding atoms with distances C—H = 0.98 Å (CH3), 0.99 Å (CH2) or 1.000 Å (CH) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound at 50% probability level.
3,3,5,5-Tetramethyl-3,5-disila-4,10- dioxatetracyclo[5.5.1.02,6.08,12]tridecane-9,11-dione top
Crystal data top
C13H20O4Si2F(000) = 632
Mr = 296.47Dx = 1.329 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 687 reflections
a = 8.0475 (16) Åθ = 2.2–27.5°
b = 12.047 (2) ŵ = 0.25 mm1
c = 15.361 (3) ÅT = 173 K
β = 95.84 (3)°Block, colourless
V = 1481.5 (5) Å30.77 × 0.55 × 0.40 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3398 independent reflections
Radiation source: rotating anode2921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.833, Tmax = 0.908k = 1515
6539 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
3398 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C13H20O4Si2V = 1481.5 (5) Å3
Mr = 296.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0475 (16) ŵ = 0.25 mm1
b = 12.047 (2) ÅT = 173 K
c = 15.361 (3) Å0.77 × 0.55 × 0.40 mm
β = 95.84 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3398 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2921 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.908Rint = 0.016
6539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.15Δρmax = 0.27 e Å3
3398 reflectionsΔρmin = 0.37 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.16741 (6)0.26208 (4)0.90062 (3)0.02159 (13)
Si20.13909 (6)0.22004 (4)0.97218 (3)0.01986 (13)
O10.1060 (2)0.08686 (13)1.26700 (10)0.0447 (4)
O20.34875 (17)0.10991 (11)1.21113 (8)0.0295 (3)
O30.57506 (18)0.17797 (12)1.15730 (9)0.0371 (4)
O40.03918 (16)0.25012 (11)0.88621 (8)0.0268 (3)
C10.1966 (3)0.14869 (17)1.23476 (11)0.0295 (4)
C20.4400 (2)0.19586 (15)1.17782 (11)0.0264 (4)
C30.3389 (2)0.30054 (14)1.17335 (11)0.0239 (4)
H3A0.39930.36151.20760.029*
C40.2776 (2)0.33916 (14)1.07905 (11)0.0216 (4)
H4A0.35900.38661.05090.026*
C50.1164 (2)0.39877 (14)1.09749 (11)0.0239 (4)
H5A0.05070.42531.04350.029*
H5B0.13680.46051.13970.029*
C60.0379 (2)0.29693 (14)1.13743 (11)0.0222 (4)
H6A0.07470.31051.15750.027*
C70.1770 (2)0.26977 (15)1.21202 (11)0.0254 (4)
H7A0.16300.31511.26530.031*
C80.2102 (2)0.23867 (14)1.02310 (10)0.0196 (3)
H8A0.28850.17461.03410.024*
C90.0397 (2)0.21144 (13)1.06256 (10)0.0191 (3)
H9A0.04510.13481.08760.023*
C100.2621 (3)0.15072 (18)0.83835 (13)0.0359 (5)
H10A0.23810.16470.77550.054*
H10B0.21490.07880.85280.054*
H10C0.38320.14980.85390.054*
C110.2318 (2)0.40101 (16)0.86415 (12)0.0299 (4)
H11A0.20570.40740.80060.045*
H11B0.35230.41050.87930.045*
H11C0.17160.45850.89330.045*
C120.2961 (2)0.32903 (15)0.98616 (12)0.0278 (4)
H12A0.38280.32710.93650.042*
H12B0.24180.40190.98880.042*
H12C0.34700.31581.04050.042*
C130.2450 (3)0.08331 (15)0.95812 (14)0.0348 (5)
H13A0.33710.08840.91140.052*
H13B0.28900.06211.01290.052*
H13C0.16470.02730.94270.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0194 (2)0.0322 (3)0.0130 (2)0.0056 (2)0.00060 (17)0.00032 (18)
Si20.0180 (2)0.0239 (2)0.0170 (2)0.00166 (18)0.00122 (17)0.00031 (17)
O10.0419 (9)0.0574 (10)0.0347 (8)0.0030 (7)0.0025 (7)0.0191 (7)
O20.0328 (8)0.0327 (7)0.0219 (6)0.0063 (6)0.0031 (5)0.0023 (5)
O30.0284 (8)0.0543 (9)0.0280 (7)0.0140 (7)0.0002 (6)0.0065 (6)
O40.0209 (7)0.0447 (8)0.0142 (6)0.0031 (6)0.0012 (5)0.0008 (5)
C10.0314 (10)0.0421 (11)0.0141 (8)0.0028 (8)0.0025 (7)0.0031 (7)
C20.0281 (10)0.0355 (10)0.0139 (8)0.0037 (8)0.0066 (7)0.0004 (7)
C30.0238 (9)0.0289 (9)0.0175 (8)0.0026 (7)0.0046 (7)0.0023 (7)
C40.0210 (9)0.0251 (8)0.0177 (8)0.0024 (7)0.0022 (7)0.0000 (6)
C50.0257 (9)0.0243 (9)0.0206 (8)0.0051 (7)0.0033 (7)0.0031 (6)
C60.0212 (9)0.0300 (9)0.0150 (8)0.0063 (7)0.0004 (6)0.0022 (6)
C70.0278 (10)0.0351 (10)0.0128 (8)0.0045 (8)0.0009 (7)0.0035 (7)
C80.0180 (8)0.0258 (8)0.0146 (7)0.0066 (7)0.0004 (6)0.0011 (6)
C90.0212 (8)0.0220 (8)0.0139 (8)0.0042 (6)0.0005 (6)0.0009 (6)
C100.0392 (12)0.0486 (12)0.0206 (9)0.0149 (10)0.0056 (8)0.0044 (8)
C110.0270 (10)0.0403 (11)0.0218 (9)0.0021 (8)0.0003 (7)0.0042 (7)
C120.0215 (9)0.0322 (9)0.0294 (10)0.0058 (7)0.0018 (7)0.0022 (7)
C130.0357 (11)0.0292 (10)0.0373 (11)0.0018 (8)0.0078 (9)0.0021 (8)
Geometric parameters (Å, º) top
Si1—O41.6609 (14)C5—H5A0.9900
Si1—C111.856 (2)C5—H5B0.9900
Si1—C101.856 (2)C6—C91.545 (2)
Si1—C81.8988 (17)C6—C71.553 (2)
Si2—O41.6547 (14)C6—H6A1.0000
Si2—C121.8501 (18)C7—H7A1.0000
Si2—C131.8570 (19)C8—C91.589 (2)
Si2—C91.8977 (18)C8—H8A1.0000
O1—C11.185 (2)C9—H9A1.0000
O2—C11.393 (2)C10—H10A0.9800
O2—C21.396 (2)C10—H10B0.9800
O3—C21.182 (2)C10—H10C0.9800
C1—C71.505 (3)C11—H11A0.9800
C2—C31.499 (3)C11—H11B0.9800
C3—C71.531 (3)C11—H11C0.9800
C3—C41.553 (2)C12—H12A0.9800
C3—H3A1.0000C12—H12B0.9800
C4—C51.535 (2)C12—H12C0.9800
C4—C81.551 (2)C13—H13A0.9800
C4—H4A1.0000C13—H13B0.9800
C5—C61.536 (2)C13—H13C0.9800
O4—Si1—C11110.16 (8)C7—C6—H6A114.5
O4—Si1—C10109.06 (9)C1—C7—C3104.57 (15)
C11—Si1—C10110.76 (10)C1—C7—C6115.23 (15)
O4—Si1—C8101.37 (8)C3—C7—C6103.91 (14)
C11—Si1—C8113.90 (8)C1—C7—H7A110.9
C10—Si1—C8111.15 (8)C3—C7—H7A110.9
O4—Si2—C12109.29 (8)C6—C7—H7A110.9
O4—Si2—C13110.85 (9)C4—C8—C9102.53 (13)
C12—Si2—C13109.41 (10)C4—C8—Si1116.81 (12)
O4—Si2—C9101.65 (7)C9—C8—Si1109.40 (11)
C12—Si2—C9115.46 (8)C4—C8—H8A109.3
C13—Si2—C9109.96 (8)C9—C8—H8A109.3
C1—O2—C2110.85 (15)Si1—C8—H8A109.3
Si2—O4—Si1118.28 (8)C6—C9—C8102.71 (13)
O1—C1—O2119.50 (18)C6—C9—Si2116.39 (12)
O1—C1—C7130.70 (19)C8—C9—Si2109.22 (11)
O2—C1—C7109.81 (16)C6—C9—H9A109.4
O3—C2—O2119.65 (17)C8—C9—H9A109.4
O3—C2—C3130.63 (19)Si2—C9—H9A109.4
O2—C2—C3109.71 (16)Si1—C10—H10A109.5
C2—C3—C7104.96 (15)Si1—C10—H10B109.5
C2—C3—C4114.45 (14)H10A—C10—H10B109.5
C7—C3—C4103.46 (14)Si1—C10—H10C109.5
C2—C3—H3A111.2H10A—C10—H10C109.5
C7—C3—H3A111.2H10B—C10—H10C109.5
C4—C3—H3A111.2Si1—C11—H11A109.5
C5—C4—C8102.28 (14)Si1—C11—H11B109.5
C5—C4—C399.31 (14)H11A—C11—H11B109.5
C8—C4—C3110.06 (14)Si1—C11—H11C109.5
C5—C4—H4A114.5H11A—C11—H11C109.5
C8—C4—H4A114.5H11B—C11—H11C109.5
C3—C4—H4A114.5Si2—C12—H12A109.5
C4—C5—C695.15 (13)Si2—C12—H12B109.5
C4—C5—H5A112.7H12A—C12—H12B109.5
C6—C5—H5A112.7Si2—C12—H12C109.5
C4—C5—H5B112.7H12A—C12—H12C109.5
C6—C5—H5B112.7H12B—C12—H12C109.5
H5A—C5—H5B110.2Si2—C13—H13A109.5
C5—C6—C9101.53 (13)Si2—C13—H13B109.5
C5—C6—C799.69 (14)H13A—C13—H13B109.5
C9—C6—C7110.38 (14)Si2—C13—H13C109.5
C5—C6—H6A114.5H13A—C13—H13C109.5
C9—C6—H6A114.5H13B—C13—H13C109.5
C12—Si2—O4—Si1123.01 (10)C4—C3—C7—C61.66 (17)
C13—Si2—O4—Si1116.32 (10)C5—C6—C7—C1148.19 (15)
C9—Si2—O4—Si10.51 (10)C9—C6—C7—C141.9 (2)
C11—Si1—O4—Si2122.87 (10)C5—C6—C7—C334.41 (16)
C10—Si1—O4—Si2115.37 (10)C9—C6—C7—C371.83 (17)
C8—Si1—O4—Si21.94 (10)C5—C4—C8—C933.12 (15)
C2—O2—C1—O1177.51 (17)C3—C4—C8—C971.70 (16)
C2—O2—C1—C72.98 (19)C5—C4—C8—Si186.45 (15)
C1—O2—C2—O3177.48 (16)C3—C4—C8—Si1168.72 (12)
C1—O2—C2—C33.49 (19)O4—Si1—C8—C4113.01 (13)
O3—C2—C3—C7178.57 (19)C11—Si1—C8—C45.26 (15)
O2—C2—C3—C72.54 (18)C10—Si1—C8—C4131.21 (14)
O3—C2—C3—C468.7 (3)O4—Si1—C8—C92.82 (12)
O2—C2—C3—C4110.17 (17)C11—Si1—C8—C9121.09 (12)
C2—C3—C4—C5150.76 (16)C10—Si1—C8—C9112.96 (12)
C7—C3—C4—C537.17 (16)C5—C6—C9—C836.63 (15)
C2—C3—C4—C843.9 (2)C7—C6—C9—C868.39 (17)
C7—C3—C4—C869.65 (17)C5—C6—C9—Si282.62 (15)
C8—C4—C5—C655.13 (15)C7—C6—C9—Si2172.36 (12)
C3—C4—C5—C657.91 (15)C4—C8—C9—C62.16 (15)
C4—C5—C6—C956.45 (15)Si1—C8—C9—C6126.78 (11)
C4—C5—C6—C756.84 (14)C4—C8—C9—Si2121.97 (11)
O1—C1—C7—C3179.3 (2)Si1—C8—C9—Si22.65 (13)
O2—C1—C7—C31.26 (18)O4—Si2—C9—C6117.15 (13)
O1—C1—C7—C667.3 (3)C12—Si2—C9—C61.00 (16)
O2—C1—C7—C6112.13 (17)C13—Si2—C9—C6125.37 (14)
C2—C3—C7—C10.75 (17)O4—Si2—C9—C81.49 (12)
C4—C3—C7—C1119.55 (15)C12—Si2—C9—C8116.66 (12)
C2—C3—C7—C6121.95 (14)C13—Si2—C9—C8118.97 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.982.563.432 (2)149
C12—H12C···O3ii0.982.573.443 (2)149
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H20O4Si2
Mr296.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.0475 (16), 12.047 (2), 15.361 (3)
β (°) 95.84 (3)
V3)1481.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.77 × 0.55 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.833, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
6539, 3398, 2921
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.15
No. of reflections3398
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.982.563.432 (2)149
C12—H12C···O3ii0.982.573.443 (2)149
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

The work was supported financially by the 863 Project of China.

References

First citationBuese, M. A. (1986). US Patent No. 4 598 135.  Google Scholar
First citationEddy, V. J. & Hallgren, J. E. (1985). US Patent No. 4 542 226.  Google Scholar
First citationEddy, V. J. & Hallgren, J. E. (1987). J. Org. Chem. 52, 1903–1906.  CrossRef CAS Web of Science Google Scholar
First citationEddy, V. J., Hallgren, J. E. & Colborn, R. E. (1990). J. Polym. Sci. Part A Polym. Chem. 28, 2417–2426.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLewis, L. N. (1990). J. Am. Chem. Soc. 112, 5998–6004.  CrossRef CAS Web of Science Google Scholar
First citationLewis, L. N. & Uriarte, R. J. (1990). Organometallics, 9, 621–625.  CrossRef CAS Web of Science Google Scholar
First citationOnopchenko, A. & Sabourin, E. T. (1987). J. Org. Chem. 52, 4118–4121.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRyang, H.-S. (1983). US Patent No. 4 381 396.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwint, S. A. & Buese, M. A. (1991). J. Organomet. Chem. 402, 145–153.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds