organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-eth­oxy­phen­yl)triazene

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and bDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran
*Correspondence e-mail: rofouei_mk@yahoo.com

(Received 7 February 2009; accepted 5 March 2009; online 11 March 2009)

The title compound, C16H19N3O2, exhibits a trans geometry about the N=N double bond in the triazene unit in the solid state, and individual mol­ecules are close to planar with r.m.s. deviations from planarity of 0.065 Å and 0.242 Å for the two independent molecules in the asymmetric unit. Distinct inter­molecular N—H⋯N hydrogen bonds lead to the formation of dimers with an R22(8) graph-set motif. The steric demands of the eth­oxy groups in the ortho position prevent a coplanar arrangement of the two mol­ecules in the dimers and these instead consist of two inter­locked mol­ecules that are related by a non-crystallographic pseudo-twofold rotation axis. Weak C—H⋯π inter­actions between the CH groups and the aromatic phenyl rings also occur.

Related literature

For aryl triazenes, their structural properties and metal complexes, see: Meldola et al. (1888[Meldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102-118.]); Leman et al. (1993[Leman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324-4336.]); Chen et al. (2002[Chen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271-2277.]); Vrieze et al. (1987[Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry. Oxford: Pergamon Press.]). For a similar structure with cyano instead of eth­oxy groups, see: Melardi et al. (2008[Melardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281-x282.]). For the synthesis and characterization of a similar structure with meth­oxy instead of eth­oxy groups, see: Rofouei et al. (2006[Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79-x80.]). For the synthesis and crystal structures of mercury(II) and silver(I) complexes with 1,3-bis­(2-methoxy­phen­yl)tri­azene, see: Hematyar et al. (2008[Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117-x118.]) and Payehghadr et al. (2007[Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792-1798.]), respectively. For the investigation of hydrogen-bond patterns and related graph sets, see: Grell et al. (2002[Grell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O2

  • Mr = 285.34

  • Triclinic, [P \overline 1]

  • a = 11.3971 (7) Å

  • b = 11.8696 (7) Å

  • c = 14.0627 (9) Å

  • α = 106.467 (5)°

  • β = 98.598 (5)°

  • γ = 116.512 (5)°

  • V = 1545.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 17109 measured reflections

  • 8181 independent reflections

  • 4988 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.138

  • S = 1.00

  • 8181 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N4 0.91 2.12 3.018 (2) 170
N6—H6N⋯N3 0.91 2.11 3.008 (2) 170
C4—H4ACg1i 0.95 2.85 3.686 (2) 147
C32—H32BCg2ii 0.98 2.78 3.549 (3) 136
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z. Cg1 and Cg2 are the centroids of the C17–C22 and C25–C30 rings, respectively.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aryl triazenes have been studied for over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3-diphenyltriazene) was carried out in 1887 by Meldola (Meldola et al., 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Leman et al., 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a trans configuration in the ground state (Chen et al., 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RNN—NR]- ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze et al., 1987). We have recently reported the synthesis and characterization of the two molecules 1,3-bis(2-methoxyphenyl)triazene (Rofouei, et al., 2006) and 1,3-bis(2-cyanophenyl)triazene (Melardi, et al., 2008).

The title compound, C16H19N3O2, is a related triazene compound and crystallizes in the space group P 1 with two crystallographically independent molecules per unit cell. It exhibits a trans stereo chemistry of the NN double bond, and the C9—N3—N2—N1 and C17—N4—N5—N6 torsion angles are -179.45 (13) and 176.67 (13)°, respectively. The N1—N2, N2—N3, N4—N5 and N5—N6 bond distances are 1.3196 (18), 1.2909 (18), 1.2896 (18) and 1.3214 (18) Å, respectively, which indicates the presence of distinct single and double bonds between the nitrogen atoms. These values are in good agreement with the reported data for N—N and NN bond distances (Hematyar, et al., 2008; Payehghadr, et al. 2007). For example, in 1,3-bis(2-cyanophenyl)triazene, the N—N and NN bond distances are 1.335 (5) and 1.289 (5) Å (Melardi, et al., 2008). Individual molecules are mostly planar with an rms deviation from planarity of 0.0646 Å for all non-hydrogen atoms.

The two crystallographically independent molecules in the molecular structure (Fig. 1) are connected by two distinct classic N—H···N hydrogen bonds with D···A distances of 3.018 (2) and 3.008 (2) Å (Table 1). The N—H···N hydrogen bonds lead to the formation of dimers with an R22(8) graph set geometry (Grell et al., 2002). The steric demand of the ethoxy groups in the ortho position prevents a co-planar arrangement of the two molecules in the dimers and these do instead consist of two interlocked molecules that are related by a non-crystallographic pseudo-twofold rotation axis. The dihedral angle between the best least square planes of the two molecules is 63.15 (3) °.

Also, there are interesting weak C—H···π interactions between the CH groups and the aromatic phenyl rings with H···π and C···π distances of 2.85 and 3.686 (2) Å for C4–H4A···Cg1 (2 - x, 2 - y, 1 - z) and 2.78 and 3.549 (3) Å for C32–H32B···Cg2 (1 - x, 1 - y, -z) [Cg1 and Cg2 are centroids for C17—C22 and C25—C30 rings, respectively] (Fig. 2). The unit cell packing of the title compound is presented in Fig. 3.

Related literature top

For aryl triazenes, their structural properties and metal complexes, see: Meldola et al. (1888); Leman et al. (1993); Chen et al. (2002); Vrieze et al. (1987). For a similar structure with cyano instead of ethoxy groups, see: Melardi et al. (2008). For the synthesis and characterization of a similar structure with methoxy instead of ethoxy groups, see: Rofouei et al. (2006). For the synthesis and crystal structures of mercury(II) and silver(I) complexes with 1,3-bis(2-methoxyphenyl)triazene, see: Hematyar et al. (2008) and Payehghadr et al. (2007), respectively. For the investigation of hydrogen-bond patterns and related graph sets, see: Grell et al. (2002). Cg1 and Cg2 are the centroids of the C17–C22 and C25–C30 rings, respectively.

Experimental top

The compound was prepared by the following method: A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 K in an ice-bath. To this was added 10 mmol (1.37 g) of o–phenetidin and 13 mmol of hydrochloric acid (37%). To this solution was added a solution containing NaNO2 (6 mmol, 0.41 g) in 25 ml of water during a 15 min period. After mixing for 15 min, a solution containing 180 mmol (14.76 g) of sodium acetate in 45 ml of water was added. After mixing for 45 min the brown product was filtered off and dissolved in Et2O, and was crystallized at 263 K. Yield, (50%) 24 mmol (6.85 g). Recrystallization from Et2O afforded the product as an orange crystalline material. m. p. 374–375 K. 1H NMR(300 MHz, DMSO): 1.36 (6H, CH3), 4.10 (4H, CH2), 6.91–7.53 (8H, aromatic), 11.26 (1H, NH). IR (KBr): 3149, 2977, 1599, 1489, 1253, 1045, 742 cm-1.

Refinement top

The hydrogen atoms of the NH groups were found in difference density Fourier maps, but eventually all H atoms were placed in calculated positions. All hydrogen atoms were refined in isotropic approximation using a riding model with the Uiso(H) parameters equal to 1.2 Ueq(C/N), for methyl groups equal to 1.5 Ueq(C), where U(C) and U(N) are the respective equivalent thermal parameters of the carbon and nitrogen atoms to which the corresponding H atoms are bonded. The C-H distances are in the range of 0.95–0.98 Å, N-H distances are 0.91 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Only hydrogen atoms involved in the hydrogen bonds are shown. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. C–H···π Interactions between CH groups with aromatic phenyl rings with H···π distances of 2.85 Å for C4–H4A···Cg1 (2 - x, 2 - y, 1 - z) and 2.78 Å for C32–H32B···Cg2 (1 - x, 1 - y, -z) [Cg1 and Cg2 are centroids for C17—C22 and C25—C30 rings, respectively].
[Figure 3] Fig. 3. Unit cell packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1,3-Bis(2-ethoxyphenyl)triazene top
Crystal data top
C16H19N3O2Z = 4
Mr = 285.34F(000) = 608
Triclinic, P1Dx = 1.226 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3971 (7) ÅCell parameters from 887 reflections
b = 11.8696 (7) Åθ = 3–30°
c = 14.0627 (9) ŵ = 0.08 mm1
α = 106.467 (5)°T = 120 K
β = 98.598 (5)°Prism, orange
γ = 116.512 (5)°0.30 × 0.20 × 0.15 mm
V = 1545.7 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8181 independent reflections
Radiation source: fine-focus sealed tube4988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 29.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1515
Tmin = 0.973, Tmax = 0.982k = 1616
17109 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: mixed
wR(F2) = 0.138H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.497P]
where P = (Fo2 + 2Fc2)/3
8181 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H19N3O2γ = 116.512 (5)°
Mr = 285.34V = 1545.7 (2) Å3
Triclinic, P1Z = 4
a = 11.3971 (7) ÅMo Kα radiation
b = 11.8696 (7) ŵ = 0.08 mm1
c = 14.0627 (9) ÅT = 120 K
α = 106.467 (5)°0.30 × 0.20 × 0.15 mm
β = 98.598 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4988 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.031
17109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
8181 reflectionsΔρmin = 0.31 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.65754 (14)0.89887 (15)0.26280 (11)0.0273 (3)
H1N0.61870.85210.30170.033*
N20.57346 (14)0.91539 (14)0.20038 (10)0.0247 (3)
N30.44508 (14)0.83193 (14)0.18591 (11)0.0253 (3)
O10.81959 (12)0.82358 (12)0.34265 (9)0.0309 (3)
O20.17841 (12)0.66700 (12)0.14955 (9)0.0308 (3)
C10.80038 (16)0.98331 (17)0.28546 (12)0.0244 (4)
C20.88658 (17)0.94198 (17)0.32698 (13)0.0256 (4)
C31.02882 (17)1.01982 (18)0.34861 (14)0.0304 (4)
H3A1.08730.99180.37650.036*
C41.08542 (18)1.13829 (18)0.32955 (14)0.0323 (4)
H4A1.18271.19130.34450.039*
C51.00087 (18)1.17975 (18)0.28886 (14)0.0317 (4)
H5A1.04011.26100.27580.038*
C60.85879 (17)1.10262 (17)0.26714 (13)0.0277 (4)
H6A0.80101.13150.23960.033*
C70.90069 (18)0.77429 (18)0.38370 (14)0.0314 (4)
H7A0.97030.84440.45230.038*
H7B0.94980.75350.33530.038*
C80.8034 (2)0.6466 (2)0.39582 (15)0.0386 (5)
H8A0.85610.61070.42470.058*
H8B0.73580.57750.32730.058*
H8C0.75480.66820.44340.058*
C90.35033 (16)0.84446 (16)0.11871 (12)0.0217 (3)
C100.20907 (17)0.75634 (16)0.10018 (13)0.0244 (3)
C110.10996 (17)0.76308 (17)0.03477 (13)0.0278 (4)
H11A0.01430.70430.02260.033*
C120.15150 (18)0.85612 (18)0.01262 (14)0.0294 (4)
H12A0.08370.85940.05820.035*
C130.29049 (18)0.94394 (17)0.00583 (13)0.0279 (4)
H13A0.31801.00740.02680.034*
C140.38903 (17)0.93889 (17)0.07190 (12)0.0245 (3)
H14A0.48451.00060.08570.029*
C150.03901 (18)0.59545 (18)0.14986 (14)0.0310 (4)
H15A0.02450.53320.07760.037*
H15B0.01010.66130.17960.037*
C160.0351 (2)0.5146 (2)0.21591 (15)0.0396 (5)
H16A0.05960.46270.21680.059*
H16B0.09700.57750.28760.059*
H16C0.06560.45110.18640.059*
N40.50110 (14)0.71697 (14)0.36671 (10)0.0249 (3)
N50.42582 (13)0.58882 (14)0.30543 (10)0.0230 (3)
N60.39770 (14)0.57030 (13)0.20569 (10)0.0246 (3)
H6N0.41660.64680.19330.030*
O30.65249 (12)0.97589 (11)0.49894 (9)0.0283 (3)
O40.36188 (12)0.53622 (11)0.00756 (8)0.0262 (3)
C170.52863 (16)0.74425 (16)0.47504 (12)0.0220 (3)
C180.60555 (16)0.88364 (17)0.54400 (13)0.0238 (3)
C190.62867 (17)0.91875 (18)0.65110 (13)0.0277 (4)
H19A0.67861.01250.69780.033*
C200.57898 (18)0.81711 (19)0.68985 (13)0.0305 (4)
H20A0.59500.84170.76300.037*
C210.50605 (18)0.67988 (19)0.62246 (13)0.0303 (4)
H21A0.47430.61060.64940.036*
C220.47978 (17)0.64436 (17)0.51545 (13)0.0261 (4)
H22A0.42760.55030.46920.031*
C230.70481 (18)1.11735 (17)0.56228 (13)0.0290 (4)
H23A0.78701.15280.62240.035*
H23B0.63321.12720.58950.035*
C240.74328 (19)1.19540 (18)0.49298 (14)0.0328 (4)
H24A0.77251.29130.53180.049*
H24B0.66291.15460.43090.049*
H24C0.81941.19100.47130.049*
C250.31797 (16)0.43556 (16)0.12976 (12)0.0217 (3)
C260.30226 (16)0.41821 (16)0.02469 (12)0.0222 (3)
C270.22978 (17)0.28660 (17)0.05366 (13)0.0251 (4)
H27A0.21930.27420.12480.030*
C280.17266 (17)0.17315 (17)0.02762 (13)0.0274 (4)
H28A0.12290.08340.08130.033*
C290.18774 (17)0.19007 (17)0.07571 (13)0.0269 (4)
H29A0.14840.11220.09290.032*
C300.26063 (16)0.32121 (17)0.15456 (13)0.0243 (3)
H30A0.27130.33280.22560.029*
C310.35336 (17)0.52266 (17)0.09816 (12)0.0250 (4)
H31A0.25520.47050.14290.030*
H31B0.39900.47290.12640.030*
C320.42454 (19)0.66412 (18)0.09738 (14)0.0319 (4)
H32A0.42280.65790.16860.048*
H32B0.52080.71560.05140.048*
H32C0.37650.71120.07160.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0217 (7)0.0325 (8)0.0272 (7)0.0116 (6)0.0069 (6)0.0158 (6)
N20.0240 (7)0.0241 (7)0.0238 (7)0.0121 (6)0.0067 (6)0.0079 (6)
N30.0201 (7)0.0265 (7)0.0267 (7)0.0104 (6)0.0061 (6)0.0106 (6)
O10.0236 (6)0.0315 (7)0.0372 (7)0.0129 (5)0.0067 (5)0.0170 (6)
O20.0227 (6)0.0320 (7)0.0383 (7)0.0114 (5)0.0107 (5)0.0189 (6)
C10.0208 (8)0.0277 (9)0.0197 (8)0.0104 (7)0.0064 (6)0.0066 (7)
C20.0225 (8)0.0259 (9)0.0239 (8)0.0106 (7)0.0073 (7)0.0073 (7)
C30.0232 (9)0.0350 (10)0.0314 (9)0.0156 (8)0.0068 (7)0.0109 (8)
C40.0202 (8)0.0325 (10)0.0338 (10)0.0071 (8)0.0093 (7)0.0098 (8)
C50.0274 (9)0.0282 (9)0.0328 (10)0.0090 (8)0.0112 (8)0.0116 (8)
C60.0255 (9)0.0286 (9)0.0277 (9)0.0128 (8)0.0085 (7)0.0112 (7)
C70.0317 (10)0.0348 (10)0.0280 (9)0.0203 (8)0.0061 (8)0.0095 (8)
C80.0453 (12)0.0378 (11)0.0335 (10)0.0230 (10)0.0090 (9)0.0147 (9)
C90.0214 (8)0.0211 (8)0.0214 (8)0.0116 (7)0.0063 (6)0.0059 (6)
C100.0241 (8)0.0226 (8)0.0260 (8)0.0116 (7)0.0100 (7)0.0086 (7)
C110.0212 (8)0.0252 (9)0.0325 (9)0.0112 (7)0.0062 (7)0.0080 (7)
C120.0273 (9)0.0314 (10)0.0327 (9)0.0193 (8)0.0057 (7)0.0118 (8)
C130.0297 (9)0.0267 (9)0.0303 (9)0.0162 (8)0.0100 (7)0.0121 (7)
C140.0219 (8)0.0234 (8)0.0270 (9)0.0112 (7)0.0087 (7)0.0087 (7)
C150.0246 (9)0.0292 (9)0.0327 (10)0.0101 (8)0.0117 (7)0.0088 (8)
C160.0380 (11)0.0346 (11)0.0339 (10)0.0085 (9)0.0141 (9)0.0132 (9)
N40.0262 (7)0.0235 (7)0.0200 (7)0.0110 (6)0.0065 (6)0.0056 (6)
N50.0222 (7)0.0240 (7)0.0226 (7)0.0124 (6)0.0073 (6)0.0080 (6)
N60.0311 (8)0.0194 (7)0.0207 (7)0.0117 (6)0.0068 (6)0.0074 (6)
O30.0328 (7)0.0205 (6)0.0257 (6)0.0112 (5)0.0091 (5)0.0055 (5)
O40.0327 (7)0.0221 (6)0.0201 (6)0.0118 (5)0.0081 (5)0.0074 (5)
C170.0213 (8)0.0255 (8)0.0215 (8)0.0145 (7)0.0068 (6)0.0081 (7)
C180.0220 (8)0.0262 (9)0.0252 (8)0.0139 (7)0.0089 (7)0.0095 (7)
C190.0259 (9)0.0292 (9)0.0231 (8)0.0140 (8)0.0062 (7)0.0049 (7)
C200.0320 (10)0.0398 (11)0.0214 (8)0.0206 (9)0.0089 (7)0.0108 (8)
C210.0332 (10)0.0340 (10)0.0288 (9)0.0190 (8)0.0120 (8)0.0155 (8)
C220.0274 (9)0.0252 (9)0.0248 (8)0.0137 (7)0.0084 (7)0.0085 (7)
C230.0275 (9)0.0235 (9)0.0289 (9)0.0131 (7)0.0046 (7)0.0034 (7)
C240.0338 (10)0.0253 (9)0.0356 (10)0.0151 (8)0.0087 (8)0.0088 (8)
C250.0196 (8)0.0198 (8)0.0234 (8)0.0105 (7)0.0057 (6)0.0055 (6)
C260.0192 (8)0.0208 (8)0.0255 (8)0.0102 (7)0.0065 (6)0.0082 (7)
C270.0240 (8)0.0261 (9)0.0217 (8)0.0128 (7)0.0055 (7)0.0059 (7)
C280.0239 (9)0.0205 (8)0.0301 (9)0.0105 (7)0.0056 (7)0.0031 (7)
C290.0221 (8)0.0215 (8)0.0351 (10)0.0097 (7)0.0101 (7)0.0106 (7)
C300.0229 (8)0.0277 (9)0.0237 (8)0.0135 (7)0.0089 (7)0.0104 (7)
C310.0245 (8)0.0277 (9)0.0203 (8)0.0124 (7)0.0077 (7)0.0078 (7)
C320.0373 (10)0.0334 (10)0.0275 (9)0.0181 (8)0.0142 (8)0.0133 (8)
Geometric parameters (Å, º) top
N1—N21.3196 (18)N4—N51.2896 (18)
N1—C11.401 (2)N4—C171.418 (2)
N1—H1N0.9100N5—N61.3214 (18)
N2—N31.2909 (18)N6—C251.403 (2)
N3—C91.414 (2)N6—H6N0.9100
O1—C21.369 (2)O3—C181.3634 (19)
O1—C71.430 (2)O3—C231.4380 (19)
O2—C101.3739 (19)O4—C261.3684 (19)
O2—C151.430 (2)O4—C311.4327 (18)
C1—C61.390 (2)C17—C221.388 (2)
C1—C21.403 (2)C17—C181.410 (2)
C2—C31.389 (2)C18—C191.392 (2)
C3—C41.386 (2)C19—C201.389 (2)
C3—H3A0.9500C19—H19A0.9500
C4—C51.384 (3)C20—C211.387 (2)
C4—H4A0.9500C20—H20A0.9500
C5—C61.387 (2)C21—C221.387 (2)
C5—H5A0.9500C21—H21A0.9500
C6—H6A0.9500C22—H22A0.9500
C7—C81.503 (3)C23—C241.509 (2)
C7—H7A0.9900C23—H23A0.9900
C7—H7B0.9900C23—H23B0.9900
C8—H8A0.9800C24—H24A0.9800
C8—H8B0.9800C24—H24B0.9800
C8—H8C0.9800C24—H24C0.9800
C9—C141.396 (2)C25—C301.391 (2)
C9—C101.404 (2)C25—C261.405 (2)
C10—C111.393 (2)C26—C271.392 (2)
C11—C121.390 (2)C27—C281.393 (2)
C11—H11A0.9500C27—H27A0.9500
C12—C131.383 (2)C28—C291.382 (2)
C12—H12A0.9500C28—H28A0.9500
C13—C141.381 (2)C29—C301.391 (2)
C13—H13A0.9500C29—H29A0.9500
C14—H14A0.9500C30—H30A0.9500
C15—C161.505 (3)C31—C321.499 (2)
C15—H15A0.9900C31—H31A0.9900
C15—H15B0.9900C31—H31B0.9900
C16—H16A0.9800C32—H32A0.9800
C16—H16B0.9800C32—H32B0.9800
C16—H16C0.9800C32—H32C0.9800
N2—N1—C1117.93 (14)N5—N4—C17114.76 (13)
N2—N1—H1N115.2N4—N5—N6111.94 (13)
C1—N1—H1N124.3N5—N6—C25118.29 (13)
N3—N2—N1111.87 (13)N5—N6—H6N115.3
N2—N3—C9114.20 (13)C25—N6—H6N125.1
C2—O1—C7118.23 (13)C18—O3—C23117.69 (13)
C10—O2—C15117.52 (13)C26—O4—C31117.43 (12)
C6—C1—N1123.34 (15)C22—C17—C18119.30 (15)
C6—C1—C2119.40 (15)C22—C17—N4124.46 (15)
N1—C1—C2117.25 (15)C18—C17—N4116.16 (14)
O1—C2—C3125.06 (15)O3—C18—C19124.44 (15)
O1—C2—C1115.10 (14)O3—C18—C17116.05 (14)
C3—C2—C1119.84 (15)C19—C18—C17119.51 (15)
C4—C3—C2120.06 (16)C20—C19—C18120.20 (16)
C4—C3—H3A120.0C20—C19—H19A119.9
C2—C3—H3A120.0C18—C19—H19A119.9
C5—C4—C3120.33 (16)C21—C20—C19120.42 (16)
C5—C4—H4A119.8C21—C20—H20A119.8
C3—C4—H4A119.8C19—C20—H20A119.8
C4—C5—C6119.94 (16)C20—C21—C22119.60 (16)
C4—C5—H5A120.0C20—C21—H21A120.2
C6—C5—H5A120.0C22—C21—H21A120.2
C5—C6—C1120.43 (16)C21—C22—C17120.93 (16)
C5—C6—H6A119.8C21—C22—H22A119.5
C1—C6—H6A119.8C17—C22—H22A119.5
O1—C7—C8107.45 (15)O3—C23—C24106.93 (14)
O1—C7—H7A110.2O3—C23—H23A110.3
C8—C7—H7A110.2C24—C23—H23A110.3
O1—C7—H7B110.2O3—C23—H23B110.3
C8—C7—H7B110.2C24—C23—H23B110.3
H7A—C7—H7B108.5H23A—C23—H23B108.6
C7—C8—H8A109.5C23—C24—H24A109.5
C7—C8—H8B109.5C23—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
C7—C8—H8C109.5C23—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
C14—C9—C10119.11 (14)C30—C25—N6123.08 (14)
C14—C9—N3124.14 (14)C30—C25—C26119.77 (14)
C10—C9—N3116.74 (14)N6—C25—C26117.08 (14)
O2—C10—C11124.14 (15)O4—C26—C27124.58 (14)
O2—C10—C9116.04 (14)O4—C26—C25115.80 (14)
C11—C10—C9119.82 (15)C27—C26—C25119.62 (14)
C12—C11—C10119.79 (15)C26—C27—C28119.93 (15)
C12—C11—H11A120.1C26—C27—H27A120.0
C10—C11—H11A120.1C28—C27—H27A120.0
C13—C12—C11120.73 (16)C29—C28—C27120.51 (15)
C13—C12—H12A119.6C29—C28—H28A119.7
C11—C12—H12A119.6C27—C28—H28A119.7
C14—C13—C12119.60 (16)C28—C29—C30119.94 (15)
C14—C13—H13A120.2C28—C29—H29A120.0
C12—C13—H13A120.2C30—C29—H29A120.0
C13—C14—C9120.92 (15)C29—C30—C25120.22 (15)
C13—C14—H14A119.5C29—C30—H30A119.9
C9—C14—H14A119.5C25—C30—H30A119.9
O2—C15—C16107.22 (15)O4—C31—C32107.73 (13)
O2—C15—H15A110.3O4—C31—H31A110.2
C16—C15—H15A110.3C32—C31—H31A110.2
O2—C15—H15B110.3O4—C31—H31B110.2
C16—C15—H15B110.3C32—C31—H31B110.2
H15A—C15—H15B108.5H31A—C31—H31B108.5
C15—C16—H16A109.5C31—C32—H32A109.5
C15—C16—H16B109.5C31—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C15—C16—H16C109.5C31—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C1—N1—N2—N3179.87 (14)C17—N4—N5—N6176.67 (13)
N1—N2—N3—C9179.45 (13)N4—N5—N6—C25179.15 (13)
N2—N1—C1—C615.8 (2)N5—N4—C17—C220.5 (2)
N2—N1—C1—C2163.08 (14)N5—N4—C17—C18177.30 (14)
C7—O1—C2—C30.5 (2)C23—O3—C18—C1913.0 (2)
C7—O1—C2—C1179.30 (14)C23—O3—C18—C17166.92 (14)
C6—C1—C2—O1179.75 (14)C22—C17—C18—O3178.74 (14)
N1—C1—C2—O11.4 (2)N4—C17—C18—O34.3 (2)
C6—C1—C2—C30.5 (2)C22—C17—C18—C191.3 (2)
N1—C1—C2—C3178.44 (15)N4—C17—C18—C19175.66 (14)
O1—C2—C3—C4180.00 (15)O3—C18—C19—C20178.65 (15)
C1—C2—C3—C40.2 (3)C17—C18—C19—C201.4 (2)
C2—C3—C4—C50.0 (3)C18—C19—C20—C210.0 (3)
C3—C4—C5—C60.1 (3)C19—C20—C21—C221.6 (3)
C4—C5—C6—C10.3 (3)C20—C21—C22—C171.7 (3)
N1—C1—C6—C5178.32 (16)C18—C17—C22—C210.2 (2)
C2—C1—C6—C50.5 (2)N4—C17—C22—C21176.97 (16)
C2—O1—C7—C8178.55 (14)C18—O3—C23—C24177.46 (14)
N2—N3—C9—C140.7 (2)N5—N6—C25—C303.8 (2)
N2—N3—C9—C10179.91 (14)N5—N6—C25—C26173.27 (14)
C15—O2—C10—C1112.3 (2)C31—O4—C26—C272.5 (2)
C15—O2—C10—C9167.79 (14)C31—O4—C26—C25177.30 (13)
C14—C9—C10—O2179.35 (14)C30—C25—C26—O4179.94 (14)
N3—C9—C10—O20.1 (2)N6—C25—C26—O42.9 (2)
C14—C9—C10—C110.8 (2)C30—C25—C26—C270.2 (2)
N3—C9—C10—C11179.99 (15)N6—C25—C26—C27176.98 (14)
O2—C10—C11—C12179.23 (16)O4—C26—C27—C28179.79 (15)
C9—C10—C11—C120.6 (2)C25—C26—C27—C280.4 (2)
C10—C11—C12—C131.1 (3)C26—C27—C28—C290.2 (2)
C11—C12—C13—C140.1 (3)C27—C28—C29—C300.1 (2)
C12—C13—C14—C91.3 (3)C28—C29—C30—C250.3 (2)
C10—C9—C14—C131.8 (2)N6—C25—C30—C29177.13 (15)
N3—C9—C14—C13179.08 (15)C26—C25—C30—C290.1 (2)
C10—O2—C15—C16175.19 (14)C26—O4—C31—C32179.72 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.912.123.018 (2)170
N6—H6N···N30.912.113.008 (2)170
C4—H4A···Cg1i0.952.853.686 (2)147
C32—H32B···Cg2ii0.982.783.549 (3)136
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H19N3O2
Mr285.34
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)11.3971 (7), 11.8696 (7), 14.0627 (9)
α, β, γ (°)106.467 (5), 98.598 (5), 116.512 (5)
V3)1545.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17109, 8181, 4988
Rint0.031
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.138, 1.00
No. of reflections8181
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.912.123.018 (2)170
N6—H6N···N30.912.113.008 (2)170
C4—H4A···Cg1i0.952.853.686 (2)147
C32—H32B···Cg2ii0.982.783.549 (3)136
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
 

References

First citationBruker (1998). SAINT Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271–2277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.  CrossRef CAS Google Scholar
First citationHematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117–x118.  CAS Google Scholar
First citationLeman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324–4336.  CSD CrossRef CAS Web of Science Google Scholar
First citationMelardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281–x282.  CAS Google Scholar
First citationMeldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102–118.  Google Scholar
First citationPayehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792–1798.  Web of Science CSD CrossRef CAS Google Scholar
First citationRofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79–x80.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry. Oxford: Pergamon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds