organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Bromo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetic acid

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 2 March 2009; accepted 5 March 2009; online 11 March 2009)

In the title compound, C11H9BrO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O inter­actions. In addition, the crystal structure exhibits a Br⋯π inter­action of 3.551 (3) Å between the Br atom and the centroid of the benzene ring of an adjacent mol­ecule.

Related literature

For the crystal structures of similar 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2397.], 2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o520.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9BrO4S

  • Mr = 317.15

  • Orthorhombic, P b c a

  • a = 7.7646 (7) Å

  • b = 16.304 (2) Å

  • c = 18.993 (2) Å

  • V = 2404.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.59 mm−1

  • T = 298 K

  • 0.60 × 0.60 × 0.40 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.130, Tmax = 0.233

  • 13628 measured reflections

  • 2621 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.05

  • 2621 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O4i 0.76 (4) 1.83 (4) 2.579 (3) 174 (4)
C5—H5⋯O4ii 0.93 2.62 3.453 (3) 150
C6—H6⋯O2iii 0.93 2.68 3.444 (4) 140
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related our previous communications on the synthesis and structure of 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetic acid derivatives, viz. methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008) and propyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2009). Here we report the crystal structure of the title compound, 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetic acid (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.014 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds; one between the H atom of carboxyl group and the O atom of the SO unit, a second between a benzene—H atom and the SO unit, a third between a benzene—H atom and the hydroxy group, respectively (Fig. 2 and Table 1; symmetry code as in Fig. 2). Further stability comes from intermolecular C—Br···π interactions between the Br atom and the benzene ring of an adjacent molecule, with a C4—Br···Cgv separation of 3.551 (3) Å (Fig. 2; Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2008, 2009).

Experimental top

Ethyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (276 mg, 0.8 mmol) was added to a solution of potassium hydroxide (180 mg, 3.2 mmol) in water (15 ml) and methanol (15 ml), and the mixture was refluxed for 5 h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethanol) to afford the title compound as a colorless solid [yield 81%, m.p. 472–473 K; Rf = 0.36 (ethanol)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in methanol at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.07 (s, 3H), 4.08 (s, 2H), 7.38 (d, J = 8.6 Hz, 1H), 7.43 (dd, J = 8.6 Hz and J = 1.82 Hz, 1H), 7.80 (d, J = 2.2 Hz, 1H), 10.54 (s, 1H); EI—MS 318 [M+2], 316 [M+].

Refinement top

Atom H2A of the hydroxy group was found in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms, 0.97 Å for methylene H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. O—H···O, C–H···O and Br···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1/2, y+1/2, z; (iii) -x + 2, -y + 1, -z + 1; (iv) x - 1, y, z; (v) x - 1/2, y, -z + 3/2; (iv) x + 1/2, y, -z + 3/2.]
2-(5-Bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetic acid top
Crystal data top
C11H9BrO4SF(000) = 1264
Mr = 317.15Dx = 1.752 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4375 reflections
a = 7.7646 (7) Åθ = 2.5–26.9°
b = 16.304 (2) ŵ = 3.59 mm1
c = 18.993 (2) ÅT = 298 K
V = 2404.4 (4) Å3Block, colorless
Z = 80.60 × 0.60 × 0.40 mm
Data collection top
Bruker SMART CCD
diffractometer
2621 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.1°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1720
Tmin = 0.130, Tmax = 0.233l = 2224
13628 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0414P)2 + 2.2996P]
where P = (Fo2 + 2Fc2)/3
2621 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
C11H9BrO4SV = 2404.4 (4) Å3
Mr = 317.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.7646 (7) ŵ = 3.59 mm1
b = 16.304 (2) ÅT = 298 K
c = 18.993 (2) Å0.60 × 0.60 × 0.40 mm
Data collection top
Bruker SMART CCD
diffractometer
2621 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2033 reflections with I > 2σ(I)
Tmin = 0.130, Tmax = 0.233Rint = 0.030
13628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
2621 reflectionsΔρmin = 0.85 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.09253 (6)0.55548 (3)0.70463 (2)0.07726 (18)
S0.61529 (8)0.28188 (4)0.61833 (4)0.03288 (16)
O10.7445 (2)0.49916 (11)0.54672 (9)0.0373 (4)
O21.1855 (3)0.32375 (15)0.53576 (12)0.0489 (6)
H2A1.252 (5)0.306 (2)0.5603 (19)0.057 (12)*
O31.0177 (3)0.32808 (17)0.62986 (11)0.0634 (7)
O40.4277 (2)0.26028 (12)0.61107 (13)0.0511 (6)
C10.6340 (3)0.38564 (15)0.59570 (13)0.0296 (5)
C20.5212 (3)0.45323 (15)0.61355 (13)0.0290 (5)
C30.3678 (3)0.46237 (16)0.65037 (14)0.0340 (6)
H30.31260.41790.67110.041*
C40.3016 (4)0.54037 (17)0.65473 (14)0.0380 (6)
C50.3810 (4)0.60866 (17)0.62502 (14)0.0402 (6)
H50.33220.66030.63060.048*
C60.5312 (4)0.60005 (17)0.58753 (15)0.0398 (6)
H60.58570.64460.56670.048*
C70.5968 (3)0.52154 (17)0.58250 (14)0.0328 (5)
C80.7617 (3)0.41652 (16)0.55538 (13)0.0321 (6)
C90.9129 (3)0.37869 (18)0.51972 (15)0.0386 (6)
H9A0.96960.42020.49140.046*
H9B0.87230.33620.48810.046*
C101.0426 (3)0.34198 (16)0.56920 (14)0.0343 (6)
C110.6508 (4)0.2897 (2)0.71079 (15)0.0524 (8)
H11A0.57540.33050.73020.079*
H11B0.76830.30500.71940.079*
H11C0.62780.23770.73260.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0694 (3)0.0723 (3)0.0901 (3)0.0299 (2)0.0476 (2)0.0178 (2)
S0.0288 (3)0.0292 (3)0.0406 (4)0.0017 (3)0.0038 (3)0.0007 (3)
O10.0305 (9)0.0365 (10)0.0447 (10)0.0004 (8)0.0068 (8)0.0059 (8)
O20.0321 (11)0.0708 (15)0.0437 (12)0.0153 (10)0.0048 (10)0.0039 (11)
O30.0390 (12)0.109 (2)0.0421 (13)0.0163 (13)0.0062 (10)0.0189 (12)
O40.0328 (11)0.0399 (11)0.0808 (16)0.0076 (9)0.0157 (10)0.0114 (11)
C10.0264 (12)0.0309 (13)0.0315 (12)0.0004 (10)0.0016 (10)0.0007 (10)
C20.0292 (12)0.0289 (12)0.0288 (12)0.0004 (10)0.0018 (10)0.0008 (10)
C30.0318 (14)0.0356 (14)0.0346 (14)0.0005 (11)0.0045 (11)0.0029 (11)
C40.0351 (15)0.0472 (17)0.0317 (14)0.0101 (12)0.0068 (11)0.0007 (12)
C50.0464 (16)0.0339 (14)0.0404 (15)0.0110 (12)0.0005 (12)0.0010 (12)
C60.0443 (16)0.0309 (14)0.0443 (16)0.0001 (12)0.0012 (13)0.0062 (12)
C70.0284 (13)0.0365 (14)0.0334 (13)0.0001 (11)0.0013 (10)0.0016 (11)
C80.0289 (13)0.0342 (13)0.0333 (14)0.0047 (10)0.0007 (10)0.0006 (10)
C90.0325 (14)0.0473 (16)0.0360 (14)0.0075 (12)0.0039 (11)0.0009 (12)
C100.0274 (13)0.0380 (14)0.0375 (15)0.0020 (11)0.0023 (11)0.0014 (12)
C110.0490 (18)0.068 (2)0.0403 (16)0.0029 (16)0.0024 (14)0.0116 (15)
Geometric parameters (Å, º) top
Br—C41.896 (3)C3—H30.9300
S—O41.5051 (19)C4—C51.392 (4)
S—C11.752 (3)C5—C61.374 (4)
S—C111.782 (3)C5—H50.9300
O1—C81.364 (3)C6—C71.381 (4)
O1—C71.382 (3)C6—H60.9300
O2—C101.313 (3)C8—C91.490 (3)
O2—H2A0.76 (4)C9—C101.502 (4)
O3—C101.190 (3)C9—H9A0.9700
C1—C81.350 (3)C9—H9B0.9700
C1—C21.448 (3)C11—H11A0.9600
C2—C31.389 (4)C11—H11B0.9600
C2—C71.391 (4)C11—H11C0.9600
C3—C41.374 (4)
O4—S—C1106.49 (12)C7—C6—H6121.8
O4—S—C11104.87 (15)C6—C7—O1125.8 (2)
C1—S—C1199.22 (15)C6—C7—C2123.9 (2)
C8—O1—C7106.42 (19)O1—C7—C2110.4 (2)
C10—O2—H2A112 (3)C1—C8—O1111.4 (2)
C8—C1—C2107.1 (2)C1—C8—C9133.0 (3)
C8—C1—S124.1 (2)O1—C8—C9115.5 (2)
C2—C1—S128.86 (19)C8—C9—C10114.1 (2)
C3—C2—C7119.3 (2)C8—C9—H9A108.7
C3—C2—C1135.9 (2)C10—C9—H9A108.7
C7—C2—C1104.7 (2)C8—C9—H9B108.7
C4—C3—C2116.8 (2)C10—C9—H9B108.7
C4—C3—H3121.6H9A—C9—H9B107.6
C2—C3—H3121.6O3—C10—O2124.3 (3)
C3—C4—C5123.4 (2)O3—C10—C9124.9 (3)
C3—C4—Br118.1 (2)O2—C10—C9110.7 (2)
C5—C4—Br118.6 (2)S—C11—H11A109.5
C6—C5—C4120.3 (3)S—C11—H11B109.5
C6—C5—H5119.9H11A—C11—H11B109.5
C4—C5—H5119.9S—C11—H11C109.5
C5—C6—C7116.4 (3)H11A—C11—H11C109.5
C5—C6—H6121.8H11B—C11—H11C109.5
O4—S—C1—C8137.7 (2)C8—O1—C7—C6179.9 (3)
C11—S—C1—C8113.7 (2)C8—O1—C7—C20.1 (3)
O4—S—C1—C240.9 (3)C3—C2—C7—C62.0 (4)
C11—S—C1—C267.7 (3)C1—C2—C7—C6179.0 (3)
C8—C1—C2—C3177.3 (3)C3—C2—C7—O1178.1 (2)
S—C1—C2—C31.5 (5)C1—C2—C7—O10.9 (3)
C8—C1—C2—C71.5 (3)C2—C1—C8—O11.5 (3)
S—C1—C2—C7179.8 (2)S—C1—C8—O1179.63 (18)
C7—C2—C3—C41.2 (4)C2—C1—C8—C9178.5 (3)
C1—C2—C3—C4179.8 (3)S—C1—C8—C90.4 (4)
C2—C3—C4—C50.6 (4)C7—O1—C8—C10.9 (3)
C2—C3—C4—Br179.94 (19)C7—O1—C8—C9179.1 (2)
C3—C4—C5—C61.7 (4)C1—C8—C9—C1064.2 (4)
Br—C4—C5—C6179.0 (2)O1—C8—C9—C10115.8 (3)
C4—C5—C6—C70.9 (4)C8—C9—C10—O314.6 (4)
C5—C6—C7—O1179.2 (2)C8—C9—C10—O2168.3 (2)
C5—C6—C7—C20.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.76 (4)1.83 (4)2.579 (3)174 (4)
C5—H5···O4ii0.932.623.453 (3)150
C6—H6···O2iii0.932.683.444 (4)140
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H9BrO4S
Mr317.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.7646 (7), 16.304 (2), 18.993 (2)
V3)2404.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)3.59
Crystal size (mm)0.60 × 0.60 × 0.40
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.130, 0.233
No. of measured, independent and
observed [I > 2σ(I)] reflections
13628, 2621, 2033
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.05
No. of reflections2621
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.85

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.76 (4)1.83 (4)2.579 (3)174 (4)
C5—H5···O4ii0.932.623.453 (3)149.5
C6—H6···O2iii0.932.683.444 (4)139.5
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x+2, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds