organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1199-o1200

Di­methyl [(4-fluoro­phen­yl)(6-meth­oxy­benzo­thia­zol-2-ylamino)meth­yl]phospho­nate

aCollege of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China, and bKey Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: jxndspxy74@yahoo.cn

(Received 19 April 2009; accepted 24 April 2009; online 7 May 2009)

In the mol­ecule of title compound, C17H18FN2O4PS, both the benzene ring with its conjunction C atom and the benzothia­zole ring with its conjunction N atom are close to planar (the maximum deviations are 0.0267 and 0.0427 Å for the benzene and benzothiazole rings, respectively), the dihedral angle between the planes of the benzothia­zole and benzene rings is 119.05 (3)°. The mol­ecular packing is stabilized by inter­molecular N—H⋯O, C—H⋯N and C—H⋯F hydrogen bonding, and by C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 2.99 (2), 2.96 (3), 2.88 (2) and 3.773 (4) Å].

Related literature

For the biological activity of α-amino­phospho­nate derivatives, see: Kafarski & Lejczak (2001[Kafarski, P. & Lejczak, B. (2001). Curr. Med. Chem. Anti-Cancer Agents, 1, 301-312.]); De Lombaert et al. (1995[De Lombaert, S., Blanchard, L., Tan, J., Sakane, Y., Berry, C. & Ghai, R. D. (1995). Bioorg. Med. Chem. Lett. 5, 145-150.]); Du et al., (1999[Du, S. C., Faiger, H., Belakhov, V. & Timor Bassov, T. (1999). Bioorg. Med. Chem. 7, 2671-2682.]). For activities of α-amino­phospho­nate derivatives containing an F atom and benzothia­zole or iaoxazole units, see: Yang et al. (2005[Yang, S., Song, B. A., Hong, Y. P., Jin, L. H. & Hu, D. Y. (2005). J. Chem. Crystallogr. 11, 891-895.]); Song et al. (2005[Song, B. A., Chen, C. J., Yang, S., Jin, L. H., Xue, W., Zhang, S. M., Zou, Z. H., Hu, D. Y. & Liu, G. (2005). Acta Chim. Sin. 63, 1720-1726.]); Jin et al. (2006[Jin, L. H., Song, B. A., Zhang, G. P., Xu, R. Q., Zhang, S. M., Gao, X. W., Hu, D. Y. & Yang, S. (2006). Bioorg. Med. Chem. Lett. 16, 1537-1543.]). For related structures, see: Fang et al. (2009[Fang, H., Fang, M.-J., Xu, Y., Yu, W.-C. & Zhao, Y.-F. (2009). Acta Cryst. E65, o642.]); Yang et al. (2005[Yang, S., Song, B. A., Hong, Y. P., Jin, L. H. & Hu, D. Y. (2005). J. Chem. Crystallogr. 11, 891-895.]); Jin et al. (2006[Jin, L. H., Song, B. A., Zhang, G. P., Xu, R. Q., Zhang, S. M., Gao, X. W., Hu, D. Y. & Yang, S. (2006). Bioorg. Med. Chem. Lett. 16, 1537-1543.]); Song et al. (2005[Song, B. A., Chen, C. J., Yang, S., Jin, L. H., Xue, W., Zhang, S. M., Zou, Z. H., Hu, D. Y. & Liu, G. (2005). Acta Chim. Sin. 63, 1720-1726.]); Alvarez et al. (2005[Alvarez, R. G., Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2005). Acta Cryst. E61, o569-o570.]); Chen & Li (1987[Chen, R. Y. & Li, Y. G. (1987). Chemistry of Organic Phosphorus, p.38. Beijing: High Education Press.]); Li et al. (2008[Li, B., Zhang, S., Wang, Y. & Luo, S. (2008). Acta Cryst. E64, o1549.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18FN2O4PS

  • Mr = 396.36

  • Monoclinic, C 2/c

  • a = 19.761 (5) Å

  • b = 15.781 (4) Å

  • c = 14.395 (4) Å

  • β = 122.109 (3)°

  • V = 3802.4 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.939

  • 9669 measured reflections

  • 3428 independent reflections

  • 2477 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.04

  • 3428 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.99 2.793 (3) 156
C16—H16C⋯F1ii 0.96 2.51 3.2496 133
C15—H15BCg1iii 0.96 2.99 3.608 (4) 123
C16—H16BCg3iv 0.96 2.96 3.549 (4) 121
C17—H17CCg1v 0.96 2.88 3.625 (3) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x, y, -z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) [-x, y, -z+{\script{1\over 2}}]. Cg1 and Cg3 are the centroids of the S1/N2/C4–C6 and C9–C14 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

α-Aminophosphonate derivatives, as isosteres of natural aminocarboxylic acids, have attracted much attention in medicinal and pesticide chemistry in recent years due to their wide range of biological activities (Kafarski et al., 2001; De Lombaert et al., 1995; Du et al., 1999). In our previous work, a plenty of α-aminophosphonate derivatives containing fluorine atom and benzothiazole or iaoxazole moieties had been synthesized and some of them showed fungicidal (Yang et al.,2005) and antitumor activities (Song et al., 2005; Jin et al., 2006). And some crystals of α-aminophosphonate derivatives containing dialkyl had been reported in our previous works. However, It is noteworthy that a cystal of α-aminophosphonate containing dimethyl moiety was obtained for the first time. We report herein the crystal structure of the title compound.

As illustrated in Fig. 1, both the benzene ring with its conjunction carbon atom C8 and the benzothiazole ring with its conjunction nitrogen atom N1 are fairly planar, the dihedral angle between the planes of the benzothiazole group (C1–C7/N2/S1) and the benzene ring (C9–C14) is 119.05 °. The P atom exhibits a distorted tetrahedral configuration because the bond angles of O2—P1—O3 = 116.07 (11) ° and O2—P1—O4 = 114.04 (10) ° are significantly larger than that of O3—P1—O4 = 103.65 (10) °. The P1—C8 = 1.807 (2) Å is similar to the corresponding P—C value of 1.809 (3) Å found in diisopropyl [(benzoylamino)(phenyl)methyl] phosphonate (Fang et al., 2009) and a little shorter than normal P—C single bond length of 1.850 Å (Chen et al., 1987). The C5—N1 = 1.355 (3) Å is remarkably shorter than normal C—N 1.471 (3) Å (Alvarez et al., 2005) and close to the C = N = 1.343 (2) Å, similar to the corresponding bond length of 1.358 (3) Å of the 2-(1-piperidinyl)-1,3-benzothiazole (Alvarez et al., 2005). Meanwhile, the S1—C6 and S1—C5 with bond lengths of 1.742 (2) Å and 1.760 (2) Å, respectively, are shorter than the typical C—S of 1.811 (9) Å (Li et al., 2008). These indicate that the N1 atom and benzothiazole ring form a considerable delocalization of the electron density in which the N1 atom is sp2 hybridized. The molecular packing is consolidated through weak inter/intra molecular N—H···O, C—H···N, and C—H···F hydrogen bonding, C—H···π and π-π stacking interactions (Table 2, Fig. 2, Cg1 = ring (S1/N2/C4—C6); Cg3 = ring(C9–C14)). C—H···π interactions of methyl H atoms are established towards the π-systems of neighboring aromatic groups from 4-fluorophenyl and five rings of 6-methoxybenzothiazol-2-ylamino, with centroid-to-centroid distance are 2.99 (2), 2.96 (3) and 2.88 (2) Å, respectively. In the π-π stacking interactions between two close-by phenyl rings of 4-fluorophenyl, tThe centroid-to-centroid distance is 3.773 (4) Å.

Related literature top

For the biological activity of α-aminophosphonate derivatives, see: Kafarski et al., (2001); De Lombaert et al., (1995); Du et al., (1999). For activities of α-aminophosphonate derivatives containing

an F atom and benzothiazole or iaoxazole unitss, see: Yang et al. (2005); Song et al. (2005); Jin et al. (2006). For related structures, see: Fang et al. (2009); Yang et al. (2005); Jin et al. (2006); Song et al. (2005); Alvarez et al. (2005); Chen & Li (1987); Li et al. (2008). Cg1 and Cg3 are the centroids of the S1/N2/C4–C6 and C9–C14 rings, respectively.

Experimental top

A mixture of 2-amino-6-methoxylbenzothiazole (0.9010 g, 5 mmol) and 4-fluorobenzaldehyde (0.6205 g, 5 mmol) and 20 ml toluene in a 50 ml dry flask affiliated a water separator was refluxed and stirred for 6 h. Toluene was removed by water separator and then dimethylphosphate (0.88 g, 8 mmol) was added into the flask, the reaction mixture was refluxed in a nonsolvent condition for 5 h. Residue was washed with water, filtered, dried, and crystallized three times from ethanol yielding title compound as colorless solid. The crystal suitable for X-ray analysis was obtained by slow evaporation of an anhydrous ethanol at room temperature over a period of ten days.

Refinement top

H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.987 Å; N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C) for CH2, CH, NH, and 1.5Ueq(C) for CH3 .

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing as 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of the title compound. N—H···O, C—H···O, C—H···N and C—H···F hydrogen bonds, C—H···π and π-π stacking interactions are shown as dashed lines.
Dimethyl [(4-fluorophenyl)(6-methoxybenzothiazol-2-ylamino)methyl]phosphonate top
Crystal data top
C17H18FN2O4PSF(000) = 1648
Mr = 396.36Dx = 1.385 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5837 reflections
a = 19.761 (5) Åθ = 2.8–27.9°
b = 15.781 (4) ŵ = 0.29 mm1
c = 14.395 (4) ÅT = 296 K
β = 122.109 (3)°Block, colourless
V = 3802.4 (16) Å30.30 × 0.26 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
3428 independent reflections
Radiation source: fine-focus sealed tube2477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.919, Tmax = 0.939k = 1818
9669 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 1.1262P]
where P = (Fo2 + 2Fc2)/3
3428 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H18FN2O4PSV = 3802.4 (16) Å3
Mr = 396.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.761 (5) ŵ = 0.29 mm1
b = 15.781 (4) ÅT = 296 K
c = 14.395 (4) Å0.30 × 0.26 × 0.22 mm
β = 122.109 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3428 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2477 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.939Rint = 0.039
9669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3428 reflectionsΔρmin = 0.26 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07360 (4)0.28313 (4)0.06124 (5)0.0510 (2)
P10.20273 (4)0.09893 (4)0.09266 (5)0.0483 (2)
N20.06939 (11)0.11776 (12)0.06276 (16)0.0477 (5)
C50.10708 (13)0.18124 (14)0.05470 (17)0.0421 (5)
C40.00865 (13)0.14714 (14)0.07713 (18)0.0445 (5)
C60.00177 (13)0.23554 (14)0.07921 (17)0.0438 (5)
C70.05321 (14)0.27298 (16)0.09682 (19)0.0524 (6)
H70.05680.33170.09810.063*
C10.10315 (14)0.22182 (16)0.11256 (19)0.0506 (6)
C30.04236 (14)0.09767 (16)0.0913 (2)0.0571 (7)
H30.03950.03900.08900.069*
C20.09822 (15)0.13484 (16)0.1089 (2)0.0563 (6)
H20.13260.10090.11840.068*
N10.16956 (11)0.17525 (12)0.04083 (17)0.0524 (5)
H10.19230.22090.03820.063*
C80.19929 (13)0.09419 (14)0.03023 (19)0.0452 (6)
H80.16050.05050.01960.054*
C90.27995 (14)0.06879 (14)0.12740 (18)0.0452 (6)
C110.37489 (18)0.04111 (18)0.2316 (2)0.0659 (8)
H110.38840.09820.24390.079*
C100.30051 (17)0.01584 (16)0.1484 (2)0.0560 (6)
H100.26300.05670.10490.067*
C140.33614 (15)0.12855 (17)0.1936 (2)0.0625 (7)
H140.32370.18590.18100.075*
C120.42812 (17)0.0196 (2)0.2955 (2)0.0684 (8)
C130.41102 (17)0.1034 (2)0.2788 (3)0.0751 (9)
H130.44890.14350.32380.090*
F10.50137 (11)0.00510 (13)0.37934 (15)0.1064 (7)
O10.15552 (10)0.26361 (12)0.13111 (15)0.0658 (5)
C170.20925 (16)0.21423 (19)0.1466 (2)0.0707 (8)
H17A0.24370.18220.08130.106*
H17B0.24090.25110.16170.106*
H17C0.17940.17620.20710.106*
O20.24876 (11)0.17048 (11)0.09456 (13)0.0612 (5)
O40.23331 (10)0.01050 (10)0.10441 (13)0.0555 (4)
O30.11234 (11)0.09795 (13)0.18384 (15)0.0752 (6)
C160.31296 (19)0.0033 (2)0.0807 (3)0.0886 (10)
H16A0.32920.04440.10560.133*
H16B0.31380.05360.11770.133*
H16C0.34900.01010.00310.133*
C150.0861 (2)0.1088 (3)0.2974 (3)0.1293 (16)
H15A0.11660.15320.30400.194*
H15B0.03050.12360.33860.194*
H15C0.09380.05690.32540.194*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0591 (4)0.0372 (4)0.0646 (4)0.0040 (3)0.0382 (3)0.0005 (3)
P10.0512 (4)0.0440 (4)0.0452 (3)0.0112 (3)0.0226 (3)0.0035 (3)
N20.0461 (11)0.0395 (11)0.0582 (12)0.0059 (9)0.0282 (10)0.0038 (9)
C50.0426 (13)0.0393 (13)0.0389 (12)0.0061 (10)0.0180 (11)0.0032 (9)
C40.0451 (13)0.0396 (14)0.0455 (13)0.0073 (10)0.0219 (11)0.0049 (10)
C60.0455 (13)0.0416 (14)0.0425 (12)0.0052 (11)0.0221 (11)0.0035 (10)
C70.0572 (15)0.0428 (14)0.0582 (15)0.0044 (12)0.0313 (13)0.0054 (11)
C10.0490 (14)0.0532 (16)0.0514 (14)0.0053 (12)0.0278 (12)0.0090 (11)
C30.0579 (16)0.0412 (15)0.0777 (18)0.0081 (12)0.0398 (15)0.0053 (12)
C20.0549 (15)0.0535 (17)0.0678 (16)0.0135 (12)0.0374 (14)0.0064 (12)
N10.0529 (12)0.0390 (11)0.0741 (14)0.0097 (9)0.0396 (11)0.0039 (10)
C80.0488 (14)0.0367 (13)0.0547 (14)0.0089 (11)0.0306 (12)0.0056 (10)
C90.0538 (14)0.0431 (14)0.0464 (13)0.0045 (11)0.0319 (12)0.0008 (10)
C110.087 (2)0.0563 (18)0.0570 (16)0.0167 (16)0.0403 (17)0.0113 (14)
C100.0756 (18)0.0459 (16)0.0494 (14)0.0029 (13)0.0352 (14)0.0002 (11)
C140.0611 (17)0.0487 (16)0.0647 (17)0.0037 (13)0.0247 (15)0.0009 (13)
C120.0643 (18)0.079 (2)0.0573 (16)0.0179 (16)0.0290 (15)0.0111 (15)
C130.0598 (18)0.070 (2)0.0721 (19)0.0062 (15)0.0192 (16)0.0051 (15)
F10.0756 (12)0.1209 (17)0.0865 (13)0.0313 (11)0.0186 (10)0.0189 (11)
O10.0625 (11)0.0652 (12)0.0842 (13)0.0062 (9)0.0488 (11)0.0148 (10)
C170.0617 (18)0.087 (2)0.0781 (19)0.0073 (15)0.0467 (16)0.0076 (15)
O20.0787 (12)0.0477 (10)0.0626 (11)0.0209 (9)0.0412 (10)0.0049 (8)
O40.0680 (11)0.0442 (10)0.0622 (10)0.0108 (8)0.0399 (9)0.0105 (8)
O30.0579 (11)0.0853 (14)0.0560 (11)0.0091 (10)0.0125 (10)0.0023 (10)
C160.093 (2)0.086 (2)0.125 (3)0.0037 (19)0.084 (2)0.003 (2)
C150.120 (3)0.149 (4)0.054 (2)0.030 (3)0.003 (2)0.009 (2)
Geometric parameters (Å, º) top
S1—C61.742 (2)C9—C141.381 (3)
S1—C51.760 (2)C9—C101.382 (3)
P1—O21.4593 (17)C11—C121.357 (4)
P1—O31.5560 (19)C11—C101.372 (4)
P1—O41.5653 (18)C11—H110.9300
P1—C81.807 (2)C10—H100.9300
N2—C51.290 (3)C14—C131.386 (4)
N2—C41.401 (3)C14—H140.9300
C5—N11.355 (3)C12—C131.355 (4)
C4—C31.373 (3)C12—F11.359 (3)
C4—C61.404 (3)C13—H130.9300
C6—C71.374 (3)O1—C171.427 (3)
C7—C11.384 (3)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C1—O11.368 (3)C17—H17C0.9600
C1—C21.379 (3)O4—C161.439 (3)
C3—C21.388 (3)O3—C151.438 (4)
C3—H30.9300C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
N1—C81.449 (3)C16—H16C0.9600
N1—H10.8600C15—H15A0.9600
C8—C91.513 (3)C15—H15B0.9600
C8—H80.9800C15—H15C0.9600
C6—S1—C588.47 (10)C14—C9—C8121.5 (2)
O2—P1—O3116.07 (11)C10—C9—C8120.1 (2)
O2—P1—O4114.04 (10)C12—C11—C10118.1 (3)
O3—P1—O4103.65 (10)C12—C11—H11120.9
O2—P1—C8113.48 (10)C10—C11—H11120.9
O3—P1—C8101.64 (11)C11—C10—C9121.7 (3)
O4—P1—C8106.64 (10)C11—C10—H10119.1
C5—N2—C4109.72 (19)C9—C10—H10119.1
N2—C5—N1125.0 (2)C9—C14—C13120.3 (3)
N2—C5—S1116.95 (17)C9—C14—H14119.9
N1—C5—S1118.01 (17)C13—C14—H14119.9
C3—C4—N2126.0 (2)C13—C12—C11122.6 (3)
C3—C4—C6118.4 (2)C13—C12—F1119.0 (3)
N2—C4—C6115.62 (19)C11—C12—F1118.4 (3)
C7—C6—C4121.8 (2)C12—C13—C14119.0 (3)
C7—C6—S1128.96 (18)C12—C13—H13120.5
C4—C6—S1109.24 (16)C14—C13—H13120.5
C6—C7—C1118.8 (2)C1—O1—C17118.1 (2)
C6—C7—H7120.6O1—C17—H17A109.5
C1—C7—H7120.6O1—C17—H17B109.5
O1—C1—C2124.3 (2)H17A—C17—H17B109.5
O1—C1—C7115.5 (2)O1—C17—H17C109.5
C2—C1—C7120.2 (2)H17A—C17—H17C109.5
C4—C3—C2120.3 (2)H17B—C17—H17C109.5
C4—C3—H3119.8C16—O4—P1123.11 (18)
C2—C3—H3119.8C15—O3—P1121.1 (2)
C1—C2—C3120.5 (2)O4—C16—H16A109.5
C1—C2—H2119.8O4—C16—H16B109.5
C3—C2—H2119.8H16A—C16—H16B109.5
C5—N1—C8121.96 (19)O4—C16—H16C109.5
C5—N1—H1119.0H16A—C16—H16C109.5
C8—N1—H1119.0H16B—C16—H16C109.5
N1—C8—C9115.05 (18)O3—C15—H15A109.5
N1—C8—P1107.14 (15)O3—C15—H15B109.5
C9—C8—P1110.28 (15)H15A—C15—H15B109.5
N1—C8—H8108.0O3—C15—H15C109.5
C9—C8—H8108.0H15A—C15—H15C109.5
P1—C8—H8108.0H15B—C15—H15C109.5
C14—C9—C10118.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.793 (3)156
C8—H8···N20.982.442.868 (4)106
C14—H14···N10.932.622.919 (5)100
C16—H16C···F1ii0.962.513.2496133
C15—H15B···Cg1iii0.962.993.608 (4)123
C16—H16B···Cg3iv0.962.963.549 (4)121
C17—H17C···Cg1v0.962.883.625 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x, y, z1/2; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18FN2O4PS
Mr396.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.761 (5), 15.781 (4), 14.395 (4)
β (°) 122.109 (3)
V3)3802.4 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
9669, 3428, 2477
Rint0.039
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.04
No. of reflections3428
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.793 (3)155.7
C8—H8···N20.982.442.868 (4)106.02
C14—H14···N10.932.622.919 (5)99.59
C16—H16C···F1ii0.962.513.2496133.38
C15—H15B···Cg1iii0.962.993.608 (4)123
C16—H16B···Cg3iv0.962.963.549 (4)121
C17—H17C···Cg1v0.962.883.625 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x, y, z1/2; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z+1/2.
 

Acknowledgements

The authors acknowledge Jiangxi Agricultural University for supporting this work.

References

First citationAlvarez, R. G., Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2005). Acta Cryst. E61, o569–o570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, R. Y. & Li, Y. G. (1987). Chemistry of Organic Phosphorus, p.38. Beijing: High Education Press.  Google Scholar
First citationDe Lombaert, S., Blanchard, L., Tan, J., Sakane, Y., Berry, C. & Ghai, R. D. (1995). Bioorg. Med. Chem. Lett. 5, 145–150.  CAS Google Scholar
First citationDu, S. C., Faiger, H., Belakhov, V. & Timor Bassov, T. (1999). Bioorg. Med. Chem. 7, 2671–2682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFang, H., Fang, M.-J., Xu, Y., Yu, W.-C. & Zhao, Y.-F. (2009). Acta Cryst. E65, o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, L. H., Song, B. A., Zhang, G. P., Xu, R. Q., Zhang, S. M., Gao, X. W., Hu, D. Y. & Yang, S. (2006). Bioorg. Med. Chem. Lett. 16, 1537–1543.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKafarski, P. & Lejczak, B. (2001). Curr. Med. Chem. Anti-Cancer Agents, 1, 301–312.  CrossRef PubMed CAS Google Scholar
First citationLi, B., Zhang, S., Wang, Y. & Luo, S. (2008). Acta Cryst. E64, o1549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, B. A., Chen, C. J., Yang, S., Jin, L. H., Xue, W., Zhang, S. M., Zou, Z. H., Hu, D. Y. & Liu, G. (2005). Acta Chim. Sin. 63, 1720–1726.  CAS Google Scholar
First citationYang, S., Song, B. A., Hong, Y. P., Jin, L. H. & Hu, D. Y. (2005). J. Chem. Crystallogr. 11, 891–895.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1199-o1200
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds