organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phen­yl)-1-(4-meth­oxy­phen­yl)prop-2-en-1-one

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 26 April 2009; accepted 13 May 2009; online 29 May 2009)

The title compound, C16H13FO2, was prepared from 4-methoxy­hypnone and 4-fluoro­benzophenone by Claisen–Schmidt condensation. All the bond lengths and bond angles are in normal ranges. The dihedral angle formed by the two benzene rings is 33.49 (2)°. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the biological activity of chalcones, see: Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Anto et al. (1994[Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.]). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000[De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305-312.]); Dimmock et al. (1998[Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.]). For a related structure, see: Guo et al. (2008[Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FO2

  • Mr = 256.26

  • Orthorhombic, P b c a

  • a = 7.457 (4) Å

  • b = 11.072 (6) Å

  • c = 31.063 (18) Å

  • V = 2565 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.13 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 14904 measured reflections

  • 3050 independent reflections

  • 2203 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.01

  • 3050 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.93 2.50 3.376 (2) 158
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological actions which include antiinflammatory (Hsieh et al., 1998) and antioxidant (Anto et al., 1994). Of particular interest, the effectiveness of chalcones againist cancer has been investigated (De Vincenzo et al., 2000; Dimmock et al., 1998). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure here.

In the crystal structure of compound (I) (Fig. 1), the dihedral angle formed by the benzene rings (C1–C6) and (C7–C12) is 33.49 (2)°. All the bond lengths and bond angles are in normal ranges. (Guo et al., 2008). There are intra- and intermolecular C—H···O hydrogen-bond interactions to stabilize the crystal structure (Table 1, Fig. 2).

Related literature top

For the biological activity of chalcones, see: Hsieh et al. (1998); Anto et al. (1994). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000); Dimmock et al. (1998). For a related structure, see: Guo et al. (2008).

Experimental top

A mixture of the 4-methoxyhypnone (0.02 mol), 4-fluorobenzophenone (0.02 mol) and 10% NaOH (10 ml) was stirred in ethanol (30 ml) for 3 h to afford the title compound (yield 83%). Single crystals suitable for X-ray measurements were obtailed by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2 or 1.5Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing and the hydrogen bonding interactions of (I),viewed down a axis.
3-(4-Fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H13FO2F(000) = 1072
Mr = 256.26Dx = 1.327 Mg m3
Dm = 1.327 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4576 reflections
a = 7.457 (4) Åθ = 2.6–27.2°
b = 11.072 (6) ŵ = 0.10 mm1
c = 31.063 (18) ÅT = 273 K
V = 2565 (3) Å3Bar, yellow
Z = 80.13 × 0.12 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2203 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 28.1°, θmin = 2.6°
ϕ and ω scansh = 89
14904 measured reflectionsk = 1414
3050 independent reflectionsl = 3140
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.3952P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3050 reflectionsΔρmax = 0.17 e Å3
173 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0151 (14)
Crystal data top
C16H13FO2V = 2565 (3) Å3
Mr = 256.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.457 (4) ŵ = 0.10 mm1
b = 11.072 (6) ÅT = 273 K
c = 31.063 (18) Å0.13 × 0.12 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2203 reflections with I > 2σ(I)
14904 measured reflectionsRint = 0.039
3050 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
3050 reflectionsΔρmin = 0.12 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.19197 (16)0.39463 (9)0.32285 (3)0.0679 (3)
O10.09858 (15)0.57395 (10)0.13185 (3)0.0674 (3)
C160.15026 (17)0.49647 (12)0.31027 (4)0.0497 (3)
C90.13654 (16)0.52293 (11)0.26375 (4)0.0447 (3)
C150.06589 (19)0.56911 (13)0.38189 (5)0.0567 (4)
H15A0.06890.48830.39000.068*
C100.07845 (18)0.63325 (11)0.24765 (4)0.0484 (3)
H10A0.04850.69450.26680.058*
C120.10839 (18)0.56345 (12)0.17528 (4)0.0504 (3)
F0.15021 (16)0.89082 (12)0.50973 (3)0.1015 (4)
C140.10856 (19)0.59300 (12)0.34157 (4)0.0535 (3)
H14A0.11250.67310.33260.064*
C110.06382 (18)0.65460 (12)0.20395 (4)0.0498 (3)
H11A0.02460.72920.19390.060*
C40.0339 (2)0.77956 (13)0.41030 (4)0.0578 (4)
H4A0.08540.80980.38520.069*
C80.17978 (19)0.43239 (12)0.23404 (5)0.0550 (4)
H8A0.21850.35750.24390.066*
C70.1660 (2)0.45230 (13)0.19088 (5)0.0600 (4)
H7A0.19530.39100.17170.072*
C30.01471 (18)0.65509 (13)0.41510 (4)0.0533 (3)
C50.0214 (2)0.85891 (16)0.44174 (5)0.0668 (4)
H5A0.00840.94180.43810.080*
C60.0961 (2)0.81261 (18)0.47852 (5)0.0702 (4)
C20.0617 (2)0.61339 (16)0.45340 (5)0.0682 (4)
H2A0.07530.53070.45760.082*
C130.0497 (2)0.68788 (15)0.11415 (5)0.0679 (4)
H13A0.04690.68220.08330.102*
H13B0.13600.74770.12260.102*
H13C0.06670.71060.12460.102*
C10.1175 (2)0.69190 (19)0.48511 (5)0.0755 (5)
H1A0.16860.66310.51040.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0827 (8)0.0466 (6)0.0744 (7)0.0011 (5)0.0083 (6)0.0087 (5)
O10.0825 (8)0.0703 (7)0.0494 (6)0.0061 (6)0.0002 (5)0.0128 (5)
C160.0457 (7)0.0435 (7)0.0600 (8)0.0068 (5)0.0021 (6)0.0038 (6)
C90.0386 (6)0.0389 (6)0.0567 (7)0.0051 (5)0.0001 (5)0.0038 (5)
C150.0590 (8)0.0532 (8)0.0578 (8)0.0064 (6)0.0015 (6)0.0086 (6)
C100.0546 (7)0.0400 (6)0.0504 (7)0.0005 (5)0.0041 (6)0.0071 (5)
C120.0474 (7)0.0532 (8)0.0508 (7)0.0031 (6)0.0009 (6)0.0102 (6)
F0.1113 (9)0.1308 (10)0.0624 (6)0.0123 (7)0.0144 (6)0.0209 (6)
C140.0613 (8)0.0466 (7)0.0525 (8)0.0033 (6)0.0038 (6)0.0037 (6)
C110.0551 (8)0.0425 (7)0.0516 (7)0.0011 (6)0.0011 (6)0.0035 (5)
C40.0687 (9)0.0642 (9)0.0407 (7)0.0032 (7)0.0014 (6)0.0075 (6)
C80.0549 (8)0.0407 (7)0.0693 (9)0.0032 (6)0.0018 (6)0.0069 (6)
C70.0638 (9)0.0497 (8)0.0665 (9)0.0064 (6)0.0020 (7)0.0202 (7)
C30.0531 (7)0.0624 (9)0.0443 (7)0.0044 (6)0.0045 (6)0.0098 (6)
C50.0815 (11)0.0689 (10)0.0501 (8)0.0018 (8)0.0055 (7)0.0013 (7)
C60.0671 (10)0.0968 (13)0.0467 (8)0.0076 (9)0.0016 (7)0.0049 (8)
C20.0699 (10)0.0777 (10)0.0571 (9)0.0075 (8)0.0018 (7)0.0184 (8)
C130.0723 (10)0.0804 (11)0.0508 (8)0.0039 (8)0.0007 (7)0.0011 (7)
C10.0704 (10)0.1107 (15)0.0454 (8)0.0035 (10)0.0081 (7)0.0135 (9)
Geometric parameters (Å, º) top
O2—C161.2334 (17)C4—C51.377 (2)
O1—C121.3561 (18)C4—C31.394 (2)
O1—C131.424 (2)C4—H4A0.9300
C16—C91.478 (2)C8—C71.363 (2)
C16—C141.478 (2)C8—H8A0.9300
C9—C101.3892 (19)C7—H7A0.9300
C9—C81.4002 (19)C3—C21.398 (2)
C15—C141.319 (2)C5—C61.371 (2)
C15—C31.455 (2)C5—H5A0.9300
C15—H15A0.9300C6—C11.362 (3)
C10—C111.382 (2)C2—C11.378 (3)
C10—H10A0.9300C2—H2A0.9300
C12—C111.3864 (19)C13—H13A0.9600
C12—C71.391 (2)C13—H13B0.9600
F—C61.361 (2)C13—H13C0.9600
C14—H14A0.9300C1—H1A0.9300
C11—H11A0.9300
C12—O1—C13118.30 (11)C7—C8—H8A119.5
O2—C16—C9120.57 (12)C9—C8—H8A119.5
O2—C16—C14120.38 (13)C8—C7—C12120.62 (12)
C9—C16—C14119.03 (12)C8—C7—H7A119.7
C10—C9—C8117.65 (13)C12—C7—H7A119.7
C10—C9—C16123.23 (12)C4—C3—C2117.37 (14)
C8—C9—C16119.11 (12)C4—C3—C15122.98 (12)
C14—C15—C3127.26 (14)C2—C3—C15119.63 (14)
C14—C15—H15A116.4C6—C5—C4118.32 (16)
C3—C15—H15A116.4C6—C5—H5A120.8
C11—C10—C9121.91 (12)C4—C5—H5A120.8
C11—C10—H10A119.0F—C6—C1118.87 (15)
C9—C10—H10A119.0F—C6—C5118.44 (18)
O1—C12—C11124.31 (13)C1—C6—C5122.70 (16)
O1—C12—C7116.05 (12)C1—C2—C3121.55 (16)
C11—C12—C7119.64 (13)C1—C2—H2A119.2
C15—C14—C16122.03 (13)C3—C2—H2A119.2
C15—C14—H14A119.0O1—C13—H13A109.5
C16—C14—H14A119.0O1—C13—H13B109.5
C10—C11—C12119.17 (13)H13A—C13—H13B109.5
C10—C11—H11A120.4O1—C13—H13C109.5
C12—C11—H11A120.4H13A—C13—H13C109.5
C5—C4—C3121.62 (14)H13B—C13—H13C109.5
C5—C4—H4A119.2C6—C1—C2118.45 (15)
C3—C4—H4A119.2C6—C1—H1A120.8
C7—C8—C9121.01 (13)C2—C1—H1A120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.932.503.376 (2)158
C15—H15A···O20.932.502.825 (2)101
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13FO2
Mr256.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)7.457 (4), 11.072 (6), 31.063 (18)
V3)2565 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.13 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14904, 3050, 2203
Rint0.039
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.01
No. of reflections3050
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.12

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.932.503.376 (2)157.7
C15—H15A···O20.932.502.825 (2)100.5
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of Shandong (Y2007B14; Y2008B29) and Weifang University for research grants.

References

First citationAnto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014–1026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds