metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua[μ2-1,2-bis­­(imidazol-1-yl­methyl)benzene-κ2N3:N3′](μ2-5-bromo­benzene-1,3-di­carboxyl­ato-κ3O1,O1′:O3)nickel(II)]

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China
*Correspondence e-mail: liugx@live.com

(Received 29 April 2009; accepted 30 April 2009; online 7 May 2009)

In the two-dimensional title coordination polymer, [Ni(C8H3BrO4)(C14H14N4)(H2O)]n, the NiII atom adopts a distorted octa­hedral geometry, being ligated by three O atoms from two different 5-bromo­benzene-1,3-dicarboxyl­ate ligands, two N atoms from two 1,2-bis­(imidazol-1-ylmeth­yl)benzene ligands and one coordinated water mol­ecule. The Ni atoms are bridged by the 5-bromo­benzene-1,3-dicarboxyl­ate ligands, forming chains, which are further linked by 1,2-bis­(imidazol-1-ylmeth­yl)benzene, generating a layer structure parallel to (001).

Related literature

For general background to self-assembly coordination polymers with metal ions and bis­(imidazole) ligands inter­connected by flexible spacers, see: Qi et al. (2008[Qi, Y., Chi, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 606-611.]); Liu et al. (2009[Liu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605-1610.]). For the role played by different organic anions in directing the final structure and topology, see: Hu et al. (2008[Hu, T.-L., Zou, R.-Q., Li, J.-R. & Bu, X.-H. (2008). Dalton Trans. pp. 1302-1311.]). For related structures, see: Liu et al. (2008[Liu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327-2336.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H3BrO4)(C14H14N4)(H2O)]

  • Mr = 558.03

  • Triclinic, [P \overline 1]

  • a = 9.1374 (12) Å

  • b = 10.1394 (14) Å

  • c = 12.9642 (18) Å

  • α = 80.046 (2)°

  • β = 83.233 (2)°

  • γ = 70.004 (2)°

  • V = 1109.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.72 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.538, Tmax = 0.641

  • 8172 measured reflections

  • 4055 independent reflections

  • 3029 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.085

  • S = 1.04

  • 4055 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.12 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The self-assembly of coordination polymers has attracted considerable attention in the past decade. This arises mainly for their various intriguing topological structures and their potential applications in material chemistry. Recently significant work has been carried out by using metal ions assembly with bis(imidazole) ligands interconnected by flexible spacers (Qi et al., 2008; Liu et al., 2009). From careful inspection of the reported cases, we found that: the ligand exhibits a special ability to formulate the compounds, and different organic anions play an important role in directing the final structures and topologies (Hu et al., 2008). Inspired by the aftermentioned considerations, 1,2-bis(imidazol-1-ylmethyl)benzene was chosen as neutral ligands, 5-bromobenzene-1,3-dicarboxylate were chosen as co-ligands to construct the title complex (I).

The title coordination polymer is a two-dimensional layer coordination polymer. The NiII atom adopts a distorted octahedral geometry, being ligated by three O atoms from two different 5-bromobenzene-1,3-dicarboxylate ligand, two N atoms from two 1,2-bis(imidazol-1-ylmethyl)benzene and one coordinated water molecule, as shown in Fig. 1. The Ni atoms are bridged by 5-bromobenzene-1,3-dicarboxylate ligand to form one-dimensional chain, which are further linked by 1,2-bis(imidazol-1-ylmethyl)benzene to generate a two-dimensional layer structure, as shown in Fig. 2.

Related literature top

For general background to self-assembly coordination polymers with metal ions and bis(imidazole) ligands interconnected by flexible spacers, see: Qi et al. (2008); Liu et al. (2009). For the role played by different organic anions in directing the final structure and topology, see: Hu et al. (2008). For related structures, see: Liu et al. (2008).

Experimental top

A mixture of Ni(NO3)2.6H2O (58.2 mg, 0.2 mmol), 5-bromobenzene-1,3-dicarboxylate acid (33.0 mg, 0.1 mmol), 1,2-bis(imidazol-1-ylmethyl)benzene (23.8 mg, 0.1 mmol), NaOH (8 mg, 0.2 mmol) and H2O (15 ml) was added in a Teflon-lined stainless steel vessel. The vessel was sealed and heated for 3 d at 433 K. After the mixture was slowly cooled to room temperature, green block crystals were obtained in the yield of ca 67% based on Ni.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. The deepest hole is located 1.12 Å from atom C16.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, extended to show the Ni coordination. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) x - 1, y + 1, z; (ii) x, y - 1, z.]
[Figure 2] Fig. 2. The two-dimensional layer structure of the title compound.
Poly[aqua[µ2-1,2-bis(imidazol-1-ylmethyl)benzene- κ2N3:N3'](µ2-5-bromobenzene-1,3-dicarboxylato- κ3O1,O1':O3)nickel(II)] top
Crystal data top
[Ni(C8H3BrO4)(C14H14N4)(H2O)]Z = 2
Mr = 558.03F(000) = 564
Triclinic, P1Dx = 1.670 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1374 (12) ÅCell parameters from 2114 reflections
b = 10.1394 (14) Åθ = 2.4–24.0°
c = 12.9642 (18) ŵ = 2.72 mm1
α = 80.046 (2)°T = 293 K
β = 83.233 (2)°Block, green
γ = 70.004 (2)°0.26 × 0.20 × 0.18 mm
V = 1109.5 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4055 independent reflections
Radiation source: sealed tube3029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS: Bruker, 1997)
h = 119
Tmin = 0.538, Tmax = 0.641k = 1211
8172 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.029P)2 + 0.735P]
where P = (Fo2 + 2Fc2)/3
4055 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Ni(C8H3BrO4)(C14H14N4)(H2O)]γ = 70.004 (2)°
Mr = 558.03V = 1109.5 (3) Å3
Triclinic, P1Z = 2
a = 9.1374 (12) ÅMo Kα radiation
b = 10.1394 (14) ŵ = 2.72 mm1
c = 12.9642 (18) ÅT = 293 K
α = 80.046 (2)°0.26 × 0.20 × 0.18 mm
β = 83.233 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4055 independent reflections
Absorption correction: multi-scan
(SADABS: Bruker, 1997)
3029 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.641Rint = 0.029
8172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.64 e Å3
4055 reflectionsΔρmin = 1.12 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.11002 (5)0.18147 (4)0.34656 (3)0.02475 (13)
N10.1280 (3)0.0814 (3)0.3229 (2)0.0286 (7)
N20.3530 (3)0.0730 (3)0.2776 (2)0.0332 (7)
N30.4261 (3)0.5489 (3)0.3554 (2)0.0372 (8)
N40.6546 (3)0.7159 (3)0.3708 (2)0.0313 (7)
O10.0886 (3)0.3683 (2)0.27370 (18)0.0326 (6)
O20.0881 (4)0.4666 (3)0.4146 (2)0.0581 (9)
O30.1442 (3)0.9777 (2)0.37521 (17)0.0287 (5)
O40.1529 (3)1.0986 (2)0.21699 (17)0.0308 (6)
O1W0.0840 (3)0.2116 (3)0.4966 (2)0.0341 (7)
Br10.14928 (6)0.76345 (5)0.06669 (3)0.06060 (18)
C10.0961 (4)0.4705 (3)0.3195 (3)0.0282 (8)
C20.1196 (4)0.6114 (3)0.2502 (3)0.0251 (8)
C30.1282 (4)0.6229 (4)0.1422 (3)0.0291 (8)
H30.12270.54440.11200.035*
C40.1448 (4)0.7516 (4)0.0806 (3)0.0306 (8)
C50.1547 (4)0.8709 (4)0.1226 (3)0.0309 (8)
H50.16610.95690.07960.037*
C60.1473 (4)0.8599 (3)0.2307 (3)0.0239 (7)
C70.1303 (4)0.7308 (3)0.2944 (3)0.0242 (7)
H70.12600.72400.36650.029*
C80.1508 (4)0.9869 (3)0.2772 (3)0.0247 (8)
C90.2459 (5)0.1249 (4)0.3411 (3)0.0454 (11)
H90.23290.20760.36820.055*
C100.3845 (5)0.0317 (4)0.3144 (3)0.0489 (11)
H100.48260.03760.31990.059*
C110.1973 (4)0.0380 (4)0.2842 (3)0.0342 (9)
H110.14440.09190.26380.041*
C120.4673 (4)0.2047 (4)0.2455 (3)0.0468 (11)
H12A0.49750.27430.30740.056*
H12B0.56010.18480.21280.056*
C130.4039 (4)0.2660 (4)0.1699 (3)0.0388 (10)
C140.4232 (5)0.2198 (5)0.0633 (4)0.0578 (12)
H140.47460.15400.04120.069*
C150.3664 (5)0.2713 (5)0.0108 (4)0.060
H150.37650.23800.08190.072*
C160.2960 (4)0.3706 (3)0.0223 (3)0.060
H160.25940.40690.02670.072*
C170.2782 (4)0.4182 (3)0.1269 (3)0.0678 (15)
H170.23050.48710.14770.081*
C180.3299 (4)0.3658 (4)0.2031 (3)0.0427 (10)
C190.3027 (5)0.4184 (4)0.3173 (4)0.0550 (12)
H19A0.29610.34520.35870.066*
H19B0.20350.43560.32750.066*
C200.5718 (4)0.6006 (4)0.3131 (3)0.0400 (10)
H200.60950.55980.25050.048*
C210.5557 (5)0.7398 (4)0.4541 (3)0.0456 (10)
H210.58130.81540.50820.055*
C220.4150 (5)0.6367 (5)0.4458 (3)0.0491 (11)
H220.32800.62780.49260.059*
H1WA0.067 (5)0.285 (5)0.483 (3)0.059 (16)*
H1WB0.008 (5)0.158 (4)0.529 (3)0.047 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0333 (3)0.0136 (2)0.0266 (2)0.00590 (19)0.00584 (19)0.00212 (18)
N10.0322 (18)0.0215 (16)0.0319 (16)0.0074 (14)0.0049 (13)0.0040 (13)
N20.0253 (18)0.0315 (18)0.0413 (18)0.0055 (14)0.0041 (14)0.0079 (14)
N30.0277 (18)0.0291 (18)0.048 (2)0.0014 (14)0.0009 (15)0.0063 (15)
N40.0332 (18)0.0224 (17)0.0362 (17)0.0061 (14)0.0031 (14)0.0044 (14)
O10.0496 (16)0.0163 (12)0.0325 (13)0.0115 (12)0.0013 (12)0.0046 (10)
O20.118 (3)0.0240 (15)0.0365 (16)0.0248 (16)0.0304 (17)0.0041 (12)
O30.0397 (15)0.0172 (12)0.0281 (13)0.0078 (11)0.0057 (11)0.0015 (10)
O40.0452 (16)0.0179 (13)0.0313 (13)0.0116 (12)0.0099 (11)0.0011 (10)
O1W0.0465 (19)0.0231 (16)0.0311 (15)0.0087 (15)0.0100 (13)0.0006 (12)
Br10.1137 (5)0.0440 (3)0.0264 (2)0.0292 (3)0.0036 (2)0.00487 (19)
C10.035 (2)0.0182 (19)0.032 (2)0.0078 (16)0.0067 (16)0.0026 (15)
C20.0250 (19)0.0179 (18)0.0340 (19)0.0079 (15)0.0046 (15)0.0045 (15)
C30.036 (2)0.0230 (19)0.0308 (19)0.0107 (16)0.0016 (16)0.0076 (15)
C40.041 (2)0.029 (2)0.0225 (18)0.0123 (17)0.0039 (16)0.0030 (15)
C50.043 (2)0.0176 (18)0.0308 (19)0.0116 (17)0.0045 (17)0.0044 (15)
C60.0235 (19)0.0167 (17)0.0319 (19)0.0069 (15)0.0033 (15)0.0031 (14)
C70.0260 (19)0.0187 (18)0.0283 (18)0.0070 (15)0.0077 (15)0.0016 (14)
C80.0231 (19)0.0146 (18)0.035 (2)0.0040 (14)0.0050 (15)0.0012 (15)
C90.047 (3)0.037 (2)0.062 (3)0.018 (2)0.005 (2)0.018 (2)
C100.038 (3)0.050 (3)0.067 (3)0.022 (2)0.004 (2)0.016 (2)
C110.030 (2)0.029 (2)0.046 (2)0.0084 (17)0.0084 (17)0.0067 (17)
C120.026 (2)0.046 (3)0.063 (3)0.0006 (19)0.003 (2)0.018 (2)
C130.031 (2)0.035 (2)0.041 (2)0.0059 (18)0.0073 (18)0.0122 (19)
C140.063 (3)0.037 (3)0.056 (3)0.003 (2)0.004 (2)0.001 (2)
C150.0590.0500.0540.0150.0240.016
C160.0590.0500.0540.0150.0240.016
C170.038 (3)0.050 (3)0.115 (5)0.002 (2)0.015 (3)0.029 (3)
C180.025 (2)0.034 (2)0.061 (3)0.0076 (18)0.0108 (19)0.013 (2)
C190.032 (2)0.039 (3)0.079 (3)0.003 (2)0.007 (2)0.003 (2)
C200.035 (2)0.032 (2)0.045 (2)0.0026 (19)0.0000 (19)0.0001 (19)
C210.049 (3)0.044 (3)0.040 (2)0.015 (2)0.002 (2)0.0038 (19)
C220.044 (3)0.054 (3)0.046 (3)0.016 (2)0.005 (2)0.005 (2)
Geometric parameters (Å, º) top
Ni1—O12.027 (2)C4—C51.381 (5)
Ni1—N4i2.057 (3)C5—C61.395 (5)
Ni1—N12.072 (3)C5—H50.9300
Ni1—O1W2.073 (3)C6—C71.392 (4)
Ni1—O4ii2.133 (2)C6—C81.503 (4)
Ni1—O3ii2.157 (2)C7—H70.9300
Ni1—C8ii2.456 (3)C8—Ni1iv2.456 (3)
N1—C111.315 (4)C9—C101.345 (5)
N1—C91.354 (4)C9—H90.9300
N2—C111.339 (4)C10—H100.9300
N2—C101.361 (5)C11—H110.9300
N2—C121.478 (4)C12—C131.508 (5)
N3—C201.341 (4)C12—H12A0.9700
N3—C221.360 (5)C12—H12B0.9700
N3—C191.466 (5)C13—C181.383 (6)
N4—C201.314 (4)C13—C141.392 (6)
N4—C211.368 (5)C14—C151.393 (6)
N4—Ni1iii2.057 (3)C14—H140.9300
O1—C11.260 (4)C15—C161.357 (6)
O2—C11.237 (4)C15—H150.9300
O3—C81.264 (4)C16—C171.368 (6)
O3—Ni1iv2.157 (2)C16—H160.9300
O4—C81.255 (4)C17—C181.395 (5)
O4—Ni1iv2.133 (2)C17—H170.9300
O1W—H1WA0.80 (5)C18—C191.507 (6)
O1W—H1WB0.82 (4)C19—H19A0.9700
Br1—C41.897 (3)C19—H19B0.9700
C1—C21.512 (5)C20—H200.9300
C2—C31.394 (4)C21—C221.353 (5)
C2—C71.396 (4)C21—H210.9300
C3—C41.377 (5)C22—H220.9300
C3—H30.9300
O1—Ni1—N4i88.51 (11)C6—C7—C2120.1 (3)
O1—Ni1—N190.67 (10)C6—C7—H7119.9
N4i—Ni1—N1178.90 (11)C2—C7—H7119.9
O1—Ni1—O1W95.91 (11)O4—C8—O3121.2 (3)
N4i—Ni1—O1W87.85 (12)O4—C8—C6118.9 (3)
N1—Ni1—O1W91.50 (11)O3—C8—C6119.8 (3)
O1—Ni1—O4ii100.66 (9)O4—C8—Ni1iv60.26 (16)
N4i—Ni1—O4ii90.21 (10)O3—C8—Ni1iv61.33 (16)
N1—Ni1—O4ii90.66 (10)C6—C8—Ni1iv170.6 (2)
O1W—Ni1—O4ii163.26 (11)C10—C9—N1110.4 (3)
O1—Ni1—O3ii162.21 (9)C10—C9—H9124.8
N4i—Ni1—O3ii91.35 (10)N1—C9—H9124.8
N1—Ni1—O3ii89.66 (10)C9—C10—N2106.4 (3)
O1W—Ni1—O3ii101.87 (10)C9—C10—H10126.8
O4ii—Ni1—O3ii61.55 (9)N2—C10—H10126.8
O1—Ni1—C8ii131.29 (10)N1—C11—N2112.2 (3)
N4i—Ni1—C8ii93.07 (11)N1—C11—H11123.9
N1—Ni1—C8ii88.03 (11)N2—C11—H11123.9
O1W—Ni1—C8ii132.80 (12)N2—C12—C13112.5 (3)
O4ii—Ni1—C8ii30.73 (9)N2—C12—H12A109.1
O3ii—Ni1—C8ii30.95 (9)C13—C12—H12A109.1
C11—N1—C9104.8 (3)N2—C12—H12B109.1
C11—N1—Ni1127.0 (2)C13—C12—H12B109.1
C9—N1—Ni1128.2 (2)H12A—C12—H12B107.8
C11—N2—C10106.2 (3)C18—C13—C14120.0 (4)
C11—N2—C12126.8 (3)C18—C13—C12122.4 (4)
C10—N2—C12126.9 (3)C14—C13—C12117.6 (4)
C20—N3—C22106.9 (3)C15—C14—C13120.7 (5)
C20—N3—C19127.8 (3)C15—C14—H14119.7
C22—N3—C19125.2 (3)C13—C14—H14119.7
C20—N4—C21105.2 (3)C16—C15—C14119.0 (4)
C20—N4—Ni1iii125.5 (3)C16—C15—H15120.5
C21—N4—Ni1iii128.8 (3)C14—C15—H15120.5
C1—O1—Ni1124.9 (2)C15—C16—C17120.9 (3)
C8—O3—Ni1iv87.72 (19)C15—C16—H16119.6
C8—O4—Ni1iv89.01 (19)C17—C16—H16119.6
Ni1—O1W—H1WA99 (3)C16—C17—C18121.5 (3)
Ni1—O1W—H1WB120 (3)C16—C17—H17119.3
H1WA—O1W—H1WB104 (4)C18—C17—H17119.2
O2—C1—O1126.4 (3)C13—C18—C17118.0 (4)
O2—C1—C2117.8 (3)C13—C18—C19122.7 (4)
O1—C1—C2115.9 (3)C17—C18—C19119.3 (4)
C3—C2—C7119.6 (3)N3—C19—C18112.9 (3)
C3—C2—C1120.7 (3)N3—C19—H19A109.0
C7—C2—C1119.8 (3)C18—C19—H19A109.0
C4—C3—C2119.3 (3)N3—C19—H19B109.0
C4—C3—H3120.3C18—C19—H19B109.0
C2—C3—H3120.3H19A—C19—H19B107.8
C3—C4—C5122.1 (3)N4—C20—N3111.8 (3)
C3—C4—Br1118.7 (2)N4—C20—H20124.1
C5—C4—Br1119.3 (3)N3—C20—H20124.1
C4—C5—C6118.7 (3)C22—C21—N4109.7 (4)
C4—C5—H5120.7C22—C21—H21125.1
C6—C5—H5120.7N4—C21—H21125.1
C7—C6—C5120.2 (3)C21—C22—N3106.4 (4)
C7—C6—C8120.3 (3)C21—C22—H22126.8
C5—C6—C8119.5 (3)N3—C22—H22126.8
O1—Ni1—N1—C11131.0 (3)C7—C6—C8—O32.7 (5)
N4i—Ni1—N1—C11173 (47)C5—C6—C8—O3179.9 (3)
O1W—Ni1—N1—C11133.1 (3)C7—C6—C8—Ni1iv91.6 (15)
O4ii—Ni1—N1—C1130.3 (3)C5—C6—C8—Ni1iv85.7 (15)
O3ii—Ni1—N1—C1131.2 (3)C11—N1—C9—C100.5 (5)
C8ii—Ni1—N1—C110.3 (3)Ni1—N1—C9—C10179.1 (3)
O1—Ni1—N1—C947.3 (3)N1—C9—C10—N20.4 (5)
N4i—Ni1—N1—C95 (6)C11—N2—C10—C90.1 (5)
O1W—Ni1—N1—C948.6 (3)C12—N2—C10—C9175.4 (4)
O4ii—Ni1—N1—C9148.0 (3)C9—N1—C11—N20.5 (4)
O3ii—Ni1—N1—C9150.5 (3)Ni1—N1—C11—N2179.1 (2)
C8ii—Ni1—N1—C9178.6 (3)C10—N2—C11—N10.2 (4)
N4i—Ni1—O1—C173.7 (3)C12—N2—C11—N1175.1 (3)
N1—Ni1—O1—C1105.6 (3)C11—N2—C12—C1329.1 (5)
O1W—Ni1—O1—C114.0 (3)C10—N2—C12—C13156.5 (4)
O4ii—Ni1—O1—C1163.6 (3)N2—C12—C13—C1891.9 (4)
O3ii—Ni1—O1—C1163.4 (3)N2—C12—C13—C1488.7 (4)
C8ii—Ni1—O1—C1166.5 (3)C18—C13—C14—C151.1 (6)
Ni1—O1—C1—O214.5 (5)C12—C13—C14—C15179.5 (3)
Ni1—O1—C1—C2164.5 (2)C13—C14—C15—C162.1 (6)
O2—C1—C2—C3179.4 (3)C14—C15—C16—C171.2 (5)
O1—C1—C2—C31.5 (5)C15—C16—C17—C180.6 (3)
O2—C1—C2—C70.5 (5)C14—C13—C18—C170.7 (5)
O1—C1—C2—C7179.6 (3)C12—C13—C18—C17178.7 (3)
C7—C2—C3—C40.9 (5)C14—C13—C18—C19178.9 (3)
C1—C2—C3—C4178.0 (3)C12—C13—C18—C191.7 (5)
C2—C3—C4—C50.6 (5)C16—C17—C18—C131.6 (4)
C2—C3—C4—Br1177.9 (3)C16—C17—C18—C19178.0 (2)
C3—C4—C5—C60.1 (6)C20—N3—C19—C1820.2 (6)
Br1—C4—C5—C6178.4 (3)C22—N3—C19—C18163.9 (4)
C4—C5—C6—C70.0 (5)C13—C18—C19—N394.0 (5)
C4—C5—C6—C8177.3 (3)C17—C18—C19—N386.4 (4)
C5—C6—C7—C20.4 (5)C21—N4—C20—N30.6 (4)
C8—C6—C7—C2177.0 (3)Ni1iii—N4—C20—N3172.4 (2)
C3—C2—C7—C60.8 (5)C22—N3—C20—N40.1 (4)
C1—C2—C7—C6178.1 (3)C19—N3—C20—N4176.4 (4)
Ni1iv—O4—C8—O37.4 (3)C20—N4—C21—C220.9 (4)
Ni1iv—O4—C8—C6169.3 (3)Ni1iii—N4—C21—C22171.8 (3)
Ni1iv—O3—C8—O47.4 (3)N4—C21—C22—N30.8 (5)
Ni1iv—O3—C8—C6169.3 (3)C20—N3—C22—C210.5 (4)
C7—C6—C8—O4174.1 (3)C19—N3—C22—C21177.1 (4)
C5—C6—C8—O43.3 (5)
Symmetry codes: (i) x1, y+1, z; (ii) x, y1, z; (iii) x+1, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H3BrO4)(C14H14N4)(H2O)]
Mr558.03
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1374 (12), 10.1394 (14), 12.9642 (18)
α, β, γ (°)80.046 (2), 83.233 (2), 70.004 (2)
V3)1109.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.72
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS: Bruker, 1997)
Tmin, Tmax0.538, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
8172, 4055, 3029
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.085, 1.04
No. of reflections4055
No. of parameters291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 1.12

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20731004), the Natural Science Foundation for Outstanding Scholars of Anhui Province, China (grant No. 044-J-04011) and the Natural Science Foundation of Education Commission of Anhui Province, China (No. KJ2008B004).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, T.-L., Zou, R.-Q., Li, J.-R. & Bu, X.-H. (2008). Dalton Trans. pp. 1302–1311.  Web of Science CSD CrossRef Google Scholar
First citationLiu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327–2336.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605–1610.  Web of Science CSD CrossRef CAS Google Scholar
First citationQi, Y., Chi, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 606–611.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds