organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Phenyl­sulfon­yl)isonicotinohydrazide monohydrate

aKey Laboratory of Macrocyclic and Supramolecular Chemistry, of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China.
*Correspondence e-mail: gyhxxiaoxin@163.com

(Received 3 May 2009; accepted 4 May 2009; online 14 May 2009)

In the title compound, C12H11N3O3S·H2O, the pyridine ring makes a dihedral angle of 24.78 (14)° with the phenyl ring. Intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds are observed and stabilize the packing in the crystal structure.

Related literature

For general background to hydrazide derivatives, see: Lemin (1961[Lemin, A. J. (1961). US Patent 2993829.]); Shanbhag et al. (2008[Shanbhag, A. V., Venkatesha, T. V., Prabhu, R. A., Kalkhambkar, R. G. & Kulkarni, G. M. (2008). J. Appl. Electrochem. 38, 279-287.]); Zhen & Li (2008[Zhen, X.-L. & Li, X.-L. (2008). Acta Cryst. E64, o2170.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O3S·H2O

  • Mr = 295.32

  • Monoclinic, P 21 /n

  • a = 7.3525 (5) Å

  • b = 20.9324 (15) Å

  • c = 9.2443 (6) Å

  • β = 107.565 (2)°

  • V = 1356.41 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 273 K

  • 0.24 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.833, Tmax = 0.864 (expected range = 0.918–0.953)

  • 10653 measured reflections

  • 2343 independent reflections

  • 1981 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.120

  • S = 1.12

  • 2343 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1W 0.86 2.04 2.779 (3) 144
O1W—H1E⋯O2i 0.78 (4) 2.07 (4) 2.857 (3) 175 (4)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazide derivatives investigated in the present work are non-toxic in nature, which play an important role in latex, plastic industry (Lemin et al., 1961; Zhen et al., 2008) and corrosion inhibition of mild steel in acidic medium (Shanbhag et al., 2008). In this paper, a substituted hydrazide, benzenesulfisoniazide, was synthesized in the solution of ethanol with benzenesulfonyl chloride and isoniazide in the ice-bath is reported.

The crystal of the title compound, (I), consists of N'-(phenylsulfinyl)isonicotinohydrazide and one water molecule, (Fig. 1). Pyridine ring makes a dihedral angle of 24.78 (14)° with the phenyl ring. The N—H···O hydrogen bonds are observed between N3 and the water molecule O1W, which the distance of the N3(H3N)···O1W hydrogen bonds is 2.779 (3) Å. In addition, there are O—H···O hydrogen bonds between O1W and O2 with distance of 2.857 (3) Å (Table 1). These hydrogen bonding interactions may help to establish the packing in the crystal structure.

Related literature top

For general background to hydrazide derivatives, see: Lemin et al. (1961); Shanbhag et al. (2008); Zhen et al. (2008).

Experimental top

Solution of benzenesulfonyl chloride (0.04 mol) in ethanol was added to a stirred ethanol solution of isoniazid (0.02 mol) in the ice-bath, then the reaction was kept on for 2 h at room temperature. The solvent was removed by reduced pressure filter, the solid product was dissolved in 50 ml ethanol,. and then set aside for five days to obtain colourless crystals.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
N'-(Phenylsulfonyl)isonicotinohydrazide monohydrate top
Crystal data top
C12H11N3O3S·H2OF(000) = 616
Mr = 295.32Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2343 reflections
a = 7.3525 (5) Åθ = 2.0–25.0°
b = 20.9324 (15) ŵ = 0.26 mm1
c = 9.2443 (6) ÅT = 273 K
β = 107.565 (2)°Block, colourless
V = 1356.41 (16) Å30.24 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2343 independent reflections
Radiation source: fine-focus sealed tube1981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.833, Tmax = 0.864k = 2424
10653 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.5954P]
where P = (Fo2 + 2Fc2)/3
2343 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C12H11N3O3S·H2OV = 1356.41 (16) Å3
Mr = 295.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3525 (5) ŵ = 0.26 mm1
b = 20.9324 (15) ÅT = 273 K
c = 9.2443 (6) Å0.24 × 0.22 × 0.19 mm
β = 107.565 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2343 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1981 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.864Rint = 0.033
10653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.43 e Å3
2343 reflectionsΔρmin = 0.53 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5180 (5)0.38868 (12)0.1480 (3)0.0457 (7)
H10.47800.37690.04630.055*
C20.5608 (5)0.45147 (13)0.1899 (3)0.0598 (9)
H20.55230.48100.11310.072*
C30.6284 (4)0.42875 (11)0.4392 (3)0.0339 (6)
H30.66530.44200.53990.041*
C40.5927 (3)0.36459 (11)0.4100 (2)0.0297 (5)
H40.60650.33590.48940.036*
C50.5361 (3)0.34348 (10)0.2611 (2)0.0257 (5)
C60.4884 (3)0.27532 (10)0.2125 (2)0.0253 (5)
C70.4594 (3)0.13874 (10)0.5560 (3)0.0289 (5)
C80.4371 (3)0.19677 (11)0.6218 (3)0.0322 (5)
H80.38440.23170.56160.039*
C90.4947 (4)0.20161 (12)0.7788 (3)0.0370 (6)
H90.48260.24030.82460.044*
C100.5702 (4)0.14896 (14)0.8673 (3)0.0424 (6)
H100.60660.15230.97250.051*
C110.5917 (4)0.09153 (13)0.8006 (3)0.0439 (7)
H110.64260.05650.86110.053*
C120.5379 (4)0.08587 (12)0.6439 (3)0.0359 (6)
H120.55400.04750.59860.043*
N10.6133 (3)0.47292 (9)0.3323 (2)0.0400 (5)
N20.5685 (3)0.23082 (8)0.31946 (19)0.0258 (4)
H2N0.63980.24250.40750.031*
N30.5352 (3)0.16619 (9)0.2867 (2)0.0293 (5)
H3N0.59250.14580.23240.035*
O10.3873 (2)0.26165 (8)0.08506 (16)0.0340 (4)
O20.2057 (2)0.16569 (8)0.30300 (19)0.0366 (4)
O30.3881 (3)0.06518 (8)0.31658 (19)0.0421 (5)
S10.38198 (8)0.13081 (3)0.35666 (6)0.0294 (2)
H1E0.942 (6)0.1209 (16)0.248 (4)0.063 (12)*
H1F0.849 (5)0.0671 (18)0.196 (4)0.063 (10)*
O1W0.8432 (3)0.10382 (10)0.2345 (2)0.0421 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.074 (2)0.0366 (14)0.0207 (12)0.0022 (13)0.0047 (12)0.0032 (10)
C20.109 (3)0.0334 (15)0.0298 (14)0.0045 (16)0.0109 (16)0.0109 (11)
C30.0439 (15)0.0309 (13)0.0245 (11)0.0031 (10)0.0068 (11)0.0011 (10)
C40.0356 (14)0.0298 (13)0.0210 (11)0.0041 (10)0.0047 (10)0.0035 (9)
C50.0239 (12)0.0290 (12)0.0223 (11)0.0043 (9)0.0042 (9)0.0018 (9)
C60.0226 (12)0.0323 (12)0.0192 (11)0.0027 (9)0.0037 (9)0.0000 (9)
C70.0306 (13)0.0260 (12)0.0285 (12)0.0040 (9)0.0064 (10)0.0012 (9)
C80.0360 (14)0.0282 (12)0.0348 (12)0.0019 (10)0.0144 (11)0.0008 (10)
C90.0384 (15)0.0392 (14)0.0378 (13)0.0110 (11)0.0181 (12)0.0107 (11)
C100.0422 (16)0.0572 (17)0.0273 (12)0.0089 (13)0.0096 (11)0.0029 (12)
C110.0493 (18)0.0434 (16)0.0350 (14)0.0029 (12)0.0068 (12)0.0098 (12)
C120.0393 (15)0.0298 (13)0.0341 (13)0.0012 (11)0.0044 (11)0.0001 (10)
N10.0537 (14)0.0300 (11)0.0331 (11)0.0006 (9)0.0084 (10)0.0014 (9)
N20.0283 (11)0.0243 (10)0.0191 (9)0.0005 (7)0.0015 (8)0.0017 (7)
N30.0354 (12)0.0252 (10)0.0259 (9)0.0027 (8)0.0073 (8)0.0044 (8)
O10.0341 (10)0.0392 (10)0.0205 (8)0.0009 (7)0.0041 (7)0.0024 (7)
O20.0273 (10)0.0362 (10)0.0401 (10)0.0004 (7)0.0008 (7)0.0024 (7)
O30.0606 (13)0.0233 (9)0.0349 (9)0.0036 (8)0.0031 (9)0.0048 (7)
S10.0332 (4)0.0227 (3)0.0273 (3)0.0019 (2)0.0014 (2)0.0017 (2)
O1W0.0352 (12)0.0344 (11)0.0582 (12)0.0005 (9)0.0161 (10)0.0123 (9)
Geometric parameters (Å, º) top
C1—C21.379 (4)C8—H80.9300
C1—C51.386 (3)C9—C101.385 (4)
C1—H10.9300C9—H90.9300
C2—N11.333 (3)C10—C111.382 (4)
C2—H20.9300C10—H100.9300
C3—N11.333 (3)C11—C121.386 (3)
C3—C41.379 (3)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.385 (3)N2—N31.392 (2)
C4—H40.9300N2—H2N0.8600
C5—C61.505 (3)N3—S11.635 (2)
C6—O11.223 (3)N3—H3N0.8600
C6—N21.356 (3)O2—S11.4393 (17)
C7—C81.390 (3)O3—S11.4272 (17)
C7—C121.392 (3)O1W—H1E0.78 (4)
C7—S11.764 (2)O1W—H1F0.86 (4)
C8—C91.387 (3)
C2—C1—C5118.5 (2)C10—C9—H9120.0
C2—C1—H1120.8C8—C9—H9120.0
C5—C1—H1120.8C11—C10—C9120.5 (2)
N1—C2—C1124.9 (2)C11—C10—H10119.7
N1—C2—H2117.6C9—C10—H10119.7
C1—C2—H2117.6C10—C11—C12120.4 (2)
N1—C3—C4124.2 (2)C10—C11—H11119.8
N1—C3—H3117.9C12—C11—H11119.8
C4—C3—H3117.9C11—C12—C7118.7 (2)
C3—C4—C5119.2 (2)C11—C12—H12120.7
C3—C4—H4120.4C7—C12—H12120.7
C5—C4—H4120.4C2—N1—C3115.6 (2)
C4—C5—C1117.6 (2)C6—N2—N3120.00 (17)
C4—C5—C6124.90 (19)C6—N2—H2N120.0
C1—C5—C6117.5 (2)N3—N2—H2N120.0
O1—C6—N2123.1 (2)N2—N3—S1116.82 (14)
O1—C6—C5121.90 (19)N2—N3—H3N121.6
N2—C6—C5115.02 (18)S1—N3—H3N121.6
C8—C7—C12121.5 (2)O3—S1—O2119.65 (11)
C8—C7—S1119.73 (18)O3—S1—N3104.70 (10)
C12—C7—S1118.79 (17)O2—S1—N3106.88 (10)
C9—C8—C7118.9 (2)O3—S1—C7109.64 (10)
C9—C8—H8120.6O2—S1—C7106.57 (11)
C7—C8—H8120.6N3—S1—C7109.05 (10)
C10—C9—C8120.1 (2)H1E—O1W—H1F108 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1W0.862.042.779 (3)144
O1W—H1E···O2i0.78 (4)2.07 (4)2.857 (3)175 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H11N3O3S·H2O
Mr295.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)7.3525 (5), 20.9324 (15), 9.2443 (6)
β (°) 107.565 (2)
V3)1356.41 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.833, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
10653, 2343, 1981
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.120, 1.12
No. of reflections2343
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.53

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1W0.862.042.779 (3)144.0
O1W—H1E···O2i0.78 (4)2.07 (4)2.857 (3)175 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province and the Governor Foundation of Guizhou Province for financial support.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLemin, A. J. (1961). US Patent 2993829.  Google Scholar
First citationShanbhag, A. V., Venkatesha, T. V., Prabhu, R. A., Kalkhambkar, R. G. & Kulkarni, G. M. (2008). J. Appl. Electrochem. 38, 279–287.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhen, X.-L. & Li, X.-L. (2008). Acta Cryst. E64, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds