organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­droxy­benzaldehyde oxime) O,O′-butane-1,4-diyldi­carbonyl ether

aFaculty of Sciences, Department of Earth Sciences, Shiraz University, Shiraz, 71454, Iran, and bFaculty of Sciences, Chemistry Department, Shiraz University, Shiraz, 71454, Iran
*Correspondence e-mail: etemadi_bi@yahoo.com

(Received 3 May 2009; accepted 4 May 2009; online 20 May 2009)

The mol­ecule of the title compound, C20H20N2O6, lies across a crystallographic inversion centre, the asymmetric unit comprising one half-mol­ecule. An intra­molecular O—H⋯N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. Pairs of inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into a layer with R22(38) ring motif. The crystal structure is further stabilized by the inter­molecular C—H⋯π inter­actions.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For Schiff bases, see: Granovski et al., (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]). For the synthesis, see: Hosseini Sarvari (2003[Hosseini Sarvari, M. (2003). Ph. D. Thesis, Shiraz University.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O6

  • Mr = 384.38

  • Monoclinic, C 2/c

  • a = 13.0293 (11) Å

  • b = 5.5464 (4) Å

  • c = 25.538 (2) Å

  • β = 91.348 (7)°

  • V = 1845.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.45 × 0.11 × 0.10 mm

Data collection
  • STOE IPDSII diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie (2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.956, Tmax = 0.985

  • 10357 measured reflections

  • 2493 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.099

  • S = 1.10

  • 2493 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.91 (3) 1.79 (3) 2.5836 (15) 144 (2)
C4—H4⋯O1i 0.93 2.45 3.1874 (17) 136
C2—H2⋯Cg1ii 0.93 2.75 3.4659 (14) 134
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+1, -y-1, z-{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base compounds are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). In continuation of our works on the synthesis and structural characterization of Schiff base ligands here we report the structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, lies across a crystallographic inversion centre. Intramolecular O—H···N hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). Pairs of intermolecular C—H···O hydrogen bonds link neighbouring molecules into a layer with R22(38) ring motif (Fig. 2). The crystal structure is further stabilized by the intermolecular C—H···π interactions [Cg1 is the centroid of the C1–C6 benzene ring] (Table 1).

Related literature top

For bond-length data, see Allen et al. (1987). For hydrogen bond motifs, see Bernstein et al. (1995). For Schiff bases, see: Granovski et al., (1993). For the synthesis, see: Hosseini Sarvari (2003).Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

An ethyl acetate solution (40 ml) of salicylaldoxime (2 mmol, 768 mg) was treated with butanedicarboxylic acid chloride (1 mmol, 183 mg) at -5 0 C. The mixture was stirred for 30 min and then filtered and the resulting white powder dried under air (Hosseini Sarvari, 2003). Single crystals suitable for X-ray diffraction were obtained from an ethanol solution.

Refinement top

The O-bound and C7 bound hydrogen atoms were located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refined using a riding model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are shown as dashed lines. Symmetry code for A suffix: -x + 1/2, -y + 1/2, -z + 1].
[Figure 2] Fig. 2. The crystal packing of the title compound, showing linking of the molecules into a layer through R22(38) motifs. Intermolecular interactions are drawn as dashed lines.
Bis(2-hydroxybenzaldehyde oxime) O,O'-(butane-1,4-diyldicarbonyl) ether top
Crystal data top
C20H20N2O6F(000) = 808
Mr = 384.38Dx = 1.384 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1302 reflections
a = 13.0293 (11) Åθ = 3.1–29.2°
b = 5.5464 (4) ŵ = 0.10 mm1
c = 25.538 (2) ÅT = 120 K
β = 91.348 (7)°Needle, colourless
V = 1845.0 (3) Å30.45 × 0.11 × 0.10 mm
Z = 4
Data collection top
STOE IPDS II
diffractometer
2493 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 3.1°
rotation method scansh = 1717
Absorption correction: numerical
(X-RED32; Stoe & Cie (2005)
k = 77
Tmin = 0.956, Tmax = 0.985l = 3534
41515 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0425P)2 + 1.8216P]
where P = (Fo2 + 2Fc2)/3
2493 reflections(Δ/σ)max = 0.004
135 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H20N2O6V = 1845.0 (3) Å3
Mr = 384.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.0293 (11) ŵ = 0.10 mm1
b = 5.5464 (4) ÅT = 120 K
c = 25.538 (2) Å0.45 × 0.11 × 0.10 mm
β = 91.348 (7)°
Data collection top
STOE IPDS II
diffractometer
2493 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie (2005)
2098 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.985Rint = 0.091
41515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.31 e Å3
2493 reflectionsΔρmin = 0.20 e Å3
135 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79600 (9)0.3740 (2)0.32698 (5)0.0186 (3)
C20.73433 (10)0.5276 (2)0.29667 (5)0.0204 (3)
H20.76200.66770.28280.025*
C30.63188 (10)0.4721 (2)0.28720 (5)0.0206 (3)
H30.59090.57680.26740.025*
C40.58953 (9)0.2610 (3)0.30699 (5)0.0212 (3)
H40.52070.22450.30040.025*
C50.65095 (9)0.1061 (2)0.33650 (5)0.0192 (3)
H50.62300.03550.34950.023*
C60.75482 (9)0.1590 (2)0.34720 (5)0.0168 (2)
C70.81678 (10)0.0064 (2)0.37953 (5)0.0193 (3)
H70.7866 (13)0.154 (3)0.3912 (7)0.027 (4)*
C81.05836 (10)0.0434 (2)0.43627 (5)0.0204 (3)
C91.11260 (10)0.2321 (2)0.46898 (5)0.0208 (3)
H9A1.07410.26170.50040.025*
H9B1.11550.38160.44940.025*
C101.22133 (10)0.1530 (2)0.48435 (5)0.0206 (3)
H10B1.25880.11670.45290.025*
H10A1.21810.00690.50510.025*
N10.90918 (8)0.0542 (2)0.39115 (4)0.0224 (3)
O10.89508 (7)0.4424 (2)0.33553 (4)0.0289 (3)
H10.9268 (18)0.333 (5)0.3572 (10)0.062 (7)*
O20.96033 (7)0.11970 (18)0.42331 (4)0.0223 (2)
O31.09270 (8)0.14750 (19)0.42343 (4)0.0271 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0151 (5)0.0196 (6)0.0210 (6)0.0028 (4)0.0008 (4)0.0010 (5)
C20.0222 (6)0.0177 (6)0.0213 (6)0.0026 (5)0.0002 (5)0.0012 (5)
C30.0191 (6)0.0219 (6)0.0207 (6)0.0031 (5)0.0022 (4)0.0009 (5)
C40.0146 (5)0.0261 (7)0.0227 (6)0.0016 (5)0.0013 (4)0.0001 (5)
C50.0172 (6)0.0199 (6)0.0204 (6)0.0031 (5)0.0011 (4)0.0008 (5)
C60.0163 (5)0.0171 (6)0.0170 (5)0.0003 (4)0.0008 (4)0.0010 (5)
C70.0202 (6)0.0185 (6)0.0191 (6)0.0007 (5)0.0006 (4)0.0001 (5)
C80.0194 (6)0.0224 (7)0.0192 (6)0.0037 (5)0.0019 (4)0.0009 (5)
C90.0209 (6)0.0207 (6)0.0206 (6)0.0033 (5)0.0025 (5)0.0011 (5)
C100.0204 (6)0.0216 (6)0.0197 (6)0.0032 (5)0.0035 (5)0.0012 (5)
N10.0197 (5)0.0231 (6)0.0241 (6)0.0047 (4)0.0043 (4)0.0052 (5)
O10.0170 (5)0.0292 (6)0.0402 (6)0.0085 (4)0.0070 (4)0.0111 (5)
O20.0199 (5)0.0217 (5)0.0250 (5)0.0030 (4)0.0048 (4)0.0048 (4)
O30.0250 (5)0.0231 (5)0.0330 (5)0.0006 (4)0.0067 (4)0.0060 (4)
Geometric parameters (Å, º) top
C1—O11.3583 (15)C7—H70.958 (18)
C1—C21.3935 (18)C8—O31.1985 (17)
C1—C61.4105 (18)C8—O21.3784 (16)
C2—C31.3857 (17)C8—C91.5047 (18)
C2—H20.9300C9—C101.5255 (18)
C3—C41.3943 (19)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.3850 (18)C10—C10i1.526 (2)
C4—H40.9300C10—H10B0.9700
C5—C61.4054 (17)C10—H10A0.9700
C5—H50.9300N1—O21.4226 (14)
C6—C71.4639 (17)O1—H10.91 (3)
C7—N11.2782 (17)
O1—C1—C2116.85 (12)C6—C7—H7119.1 (10)
O1—C1—C6123.07 (12)O3—C8—O2123.73 (12)
C2—C1—C6120.08 (11)O3—C8—C9126.36 (12)
C3—C2—C1120.10 (12)O2—C8—C9109.91 (11)
C3—C2—H2120.0C8—C9—C10111.35 (11)
C1—C2—H2120.0C8—C9—H9A109.4
C2—C3—C4120.75 (12)C10—C9—H9A109.4
C2—C3—H3119.6C8—C9—H9B109.4
C4—C3—H3119.6C10—C9—H9B109.4
C5—C4—C3119.31 (11)H9A—C9—H9B108.0
C5—C4—H4120.3C9—C10—C10i111.85 (14)
C3—C4—H4120.3C9—C10—H10B109.2
C4—C5—C6121.19 (12)C10i—C10—H10B109.2
C4—C5—H5119.4C9—C10—H10A109.2
C6—C5—H5119.4C10i—C10—H10A109.2
C5—C6—C1118.56 (11)H10B—C10—H10A107.9
C5—C6—C7119.65 (12)C7—N1—O2112.42 (11)
C1—C6—C7121.79 (11)C1—O1—H1109.0 (15)
N1—C7—C6118.03 (12)C8—O2—N1110.45 (10)
N1—C7—H7122.9 (10)
O1—C1—C2—C3178.68 (12)C2—C1—C6—C7179.53 (12)
C6—C1—C2—C31.30 (19)C5—C6—C7—N1175.82 (12)
C1—C2—C3—C41.0 (2)C1—C6—C7—N13.07 (19)
C2—C3—C4—C50.1 (2)O3—C8—C9—C100.66 (19)
C3—C4—C5—C60.6 (2)O2—C8—C9—C10179.67 (10)
C4—C5—C6—C10.30 (19)C8—C9—C10—C10i177.66 (13)
C4—C5—C6—C7178.63 (12)C6—C7—N1—O2179.06 (10)
O1—C1—C6—C5179.35 (12)O3—C8—O2—N12.57 (18)
C2—C1—C6—C50.63 (18)C9—C8—O2—N1178.39 (10)
O1—C1—C6—C70.4 (2)C7—N1—O2—C8178.03 (11)
Symmetry code: (i) x+5/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (3)1.79 (3)2.5836 (15)144 (2)
C4—H4···O1ii0.932.453.1874 (17)136
C2—H2···Cg1iii0.932.753.4659 (14)134
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x+1, y1, z1/2.

Experimental details

Crystal data
Chemical formulaC20H20N2O6
Mr384.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)13.0293 (11), 5.5464 (4), 25.538 (2)
β (°) 91.348 (7)
V3)1845.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.11 × 0.10
Data collection
DiffractometerSTOE IPDS II
diffractometer
Absorption correctionNumerical
(X-RED32; Stoe & Cie (2005)
Tmin, Tmax0.956, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
41515, 2493, 2098
Rint0.091
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.099, 1.10
No. of reflections2493
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.20

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (3)1.79 (3)2.5836 (15)144 (2)
C4—H4···O1i0.93002.45003.1874 (17)136.00
C2—H2···Cg1ii0.932.753.4659 (14)134
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5471-2009.

Acknowledgements

We thank Shiraz University for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHosseini Sarvari, M. (2003). Ph. D. Thesis, Shiraz University.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds