organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Hy­droxy­ethyl­amino)-3-phenyl-1-benzofuro[3,2-d]pyrimidin-4(3H)-one di­chloro­methane hemisolvate

aDepartment of Neurology, Affiliated Renmin Hospital, Yunyang Medical College, Shiyan 442000, People's Republic of China, bDepartment of Human Anatomy, Yunyang Medical College, Shiyan 442000, People's Republic of China, and cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: zhangzh8875301@yahoo.com.cn

(Received 7 May 2009; accepted 12 May 2009; online 20 May 2009)

In the title compound, C18H15N3O3·0.5CH2Cl2, the fused ring benzofuro[2,3-d]pyrimidine system is essentially planar [maximum deviation 0.029 (1) Å]. The planes of the pyrimidinone and phenyl rings are nearly perpendicular [dihedral angle = 87.50 (14)°]. The packing of the mol­ecules in the crystal structure is governed mainly by inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions and inter­molecular ππ inter­actions between benzofuro[3,2-d]pyrimidine units [the interplanar distances are ca 3.4 and 3.5 Å, and the distances between adjacent ring centroids are in the range 3.64 (1)–3.76 (1) Å]. The dichloromethane solvent molecule lies on a special position.

Related literature

For the preparation and biological activity of benzofuropyrimidine derivatives, see: Moneam et al. (2004[Moneam, M., Geies, A., El-Naggar, G. & Mousa, S. (2004). J. Chin. Chem. Soc. 51, 1357-1366.]); Bodke et al. (2003[Bodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187-189.]). For π-π stacking inter­actions, see: Hu et al. (2005[Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.], 2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.], 2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.], 2008[Hu, Y. G., Liu, M. G. & Ding, M. W. (2008). Helv. Chim. Acta, pp. 862-872.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For the structures of other fused pyrimidinone derivatives, see: Hu et al. (2005[Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.], 2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.], 2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.], 2008[Hu, Y. G., Liu, M. G. & Ding, M. W. (2008). Helv. Chim. Acta, pp. 862-872.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O3·0.5CH2Cl2

  • Mr = 363.80

  • Monoclinic, C 2/c

  • a = 26.928 (2) Å

  • b = 7.8931 (7) Å

  • c = 17.3134 (15) Å

  • β = 110.638 (2)°

  • V = 3443.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.960

  • 6773 measured reflections

  • 3008 independent reflections

  • 2321 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.203

  • S = 1.04

  • 3008 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O3i 0.86 2.23 2.903 (3) 136
O3—H3A⋯O2ii 0.82 1.94 2.744 (3) 167
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Derivatives of benzofuropyrimidines are of great importance because of their remarkable biological properties, such as the interesting analgesic, antihypertensive, antipyretic, antiviral, and anti-inflammatory activities (Moneam et al., 2004 and Bodke et al., 2003). Some X-ray crystal structures of benzofuro[3,2-d]pyrimidinone derivatives have been reported (Hu et al., 2005, 2006, 2007, 2008). The heterocyclic title compound (I) may be used as a new precursor for obtaining bioactive molecules and its structure is presented here (Fig.1).

In the molecule of (I), all ring atoms of benzofuro[2,3-d]pyrimidine system are essentially coplanar, with maximum deviations -0.029 (1)Å and 0.027 (2) Å for C7 and N2, respectively. The pyrimidinone ring and the phenyl (C14—C19) ring are nearly perpendicular [dihedral angle = 87.50 (14)]. Intermolecular O—H···O and N—H···O hydrogen-bonding interactions (Table 1) link the molecules, helping to stabilize the crystal structure. Further stability the crystal structure is provided by offset π-π stacking interactions (Janiak, 2000) involving the fused benzofuro[2,3-d]pyrimidin system moeties. The interplanar distance are ca 3.5 Å, with distances between adjacent ring centroids of 3.6 (1)–3.8 (1)Å [symmetry code relating the adjacent rings: -x, 2 - y, -z].

Related literature top

For the preparation and biological activity of benzofuropyrimidine derivatives, see: Moneam et al. (2004); Bodke et al. (2003). For π-π stacking interactions, see: Hu et al. (2005, 2006, 2007, 2008); Janiak (2000). For the structures of other fused pyrimidinone derivatives, see: Hu et al. (2005, 2006, 2007, 2008).

Experimental top

For background references, see: Hu et al. (2008).

Refinement top

All H atoms were located in difference maps and treated as riding atoms with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, O—H = 0.82 Å, Uiso = 1.2Ueq (C) for OH, N—H = 0.86 Å, Uiso = 1.2Ueq (N) for NH.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at 50% probability level. [Symmetry code: (a) -x, y, -z +3/2].
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the hydrogen-bonded stacking interactions (dashed lines).
2-(2-Hydroxyethylamino)-3-phenyl-1-benzofuro[3,2-d]pyrimidin- 4(3H)-one dichloromethane hemisolvate top
Crystal data top
C18H15N3O3·0.5CH2Cl2F(000) = 1512
Mr = 363.80Dx = 1.403 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2289 reflections
a = 26.928 (2) Åθ = 2.5–25.0°
b = 7.8931 (7) ŵ = 0.25 mm1
c = 17.3134 (15) ÅT = 292 K
β = 110.638 (2)°Needle, colourless
V = 3443.7 (5) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3008 independent reflections
Radiation source: fine-focus sealed tube2321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2432
Tmin = 0.941, Tmax = 0.960k = 99
6773 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.1003P)2 + 4.9568P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3008 reflectionsΔρmax = 0.74 e Å3
232 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (4)
Crystal data top
C18H15N3O3·0.5CH2Cl2V = 3443.7 (5) Å3
Mr = 363.80Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.928 (2) ŵ = 0.25 mm1
b = 7.8931 (7) ÅT = 292 K
c = 17.3134 (15) Å0.30 × 0.20 × 0.20 mm
β = 110.638 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2321 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.960Rint = 0.025
6773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.04Δρmax = 0.74 e Å3
3008 reflectionsΔρmin = 0.46 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00474 (12)0.9366 (4)0.1209 (2)0.0562 (8)
C20.04614 (14)0.9437 (5)0.1234 (2)0.0724 (10)
H20.05491.01630.15890.087*
C30.08262 (14)0.8376 (6)0.0704 (3)0.0828 (13)
H30.11720.83740.07030.099*
C40.06967 (14)0.7306 (6)0.0171 (3)0.0772 (11)
H40.09580.66180.01850.093*
C50.01884 (12)0.7234 (4)0.0155 (2)0.0626 (9)
H50.01030.65090.02030.075*
C60.01922 (11)0.8287 (4)0.06958 (18)0.0502 (7)
C70.07480 (11)0.8619 (4)0.08694 (17)0.0456 (7)
C80.08819 (11)0.9878 (4)0.14460 (18)0.0494 (7)
C90.13833 (11)1.0657 (4)0.17189 (17)0.0488 (7)
C100.15717 (11)0.8521 (3)0.08219 (16)0.0423 (7)
C110.18301 (12)0.6367 (4)0.0038 (2)0.0534 (8)
H11A0.16050.56010.02050.064*
H11B0.21590.57780.01060.064*
C120.15587 (12)0.6799 (5)0.0862 (2)0.0617 (9)
H12A0.14550.57700.11850.074*
H12B0.12420.74640.09360.074*
C140.22429 (10)1.0652 (4)0.15552 (16)0.0443 (7)
C150.23170 (12)1.1918 (4)0.10617 (18)0.0525 (8)
H150.20361.22680.05970.063*
C160.28099 (13)1.2672 (4)0.1257 (2)0.0591 (8)
H160.28621.35290.09250.071*
C170.32232 (12)1.2151 (4)0.1946 (2)0.0577 (8)
H170.35551.26530.20780.069*
C180.31458 (12)1.0894 (4)0.2437 (2)0.0603 (9)
H180.34261.05530.29030.072*
C190.26543 (12)1.0123 (4)0.22476 (19)0.0533 (8)
H190.26030.92670.25810.064*
Cl10.04437 (10)0.5409 (4)0.71999 (15)0.1632 (11)
N10.10909 (9)0.7873 (3)0.05548 (14)0.0463 (6)
N20.17227 (9)0.9896 (3)0.13565 (14)0.0439 (6)
N30.19460 (9)0.7832 (3)0.05727 (14)0.0495 (6)
H3B0.22590.82690.07330.059*
O10.04639 (8)1.0374 (3)0.16786 (13)0.0602 (6)
O20.15384 (9)1.1865 (3)0.21917 (14)0.0665 (7)
O30.19168 (9)0.7736 (4)0.11261 (14)0.0768 (8)
H3A0.17740.79800.16150.115*
C200.00000.509 (3)0.75000.394 (18)
H20A0.01940.43280.79430.473*0.5
H20B0.01940.43290.70570.473*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (17)0.068 (2)0.0549 (18)0.0005 (15)0.0201 (14)0.0145 (16)
C20.053 (2)0.099 (3)0.073 (2)0.011 (2)0.0313 (18)0.018 (2)
C30.0431 (19)0.120 (3)0.087 (3)0.001 (2)0.0251 (19)0.029 (3)
C40.0456 (19)0.093 (3)0.084 (3)0.0150 (18)0.0124 (18)0.017 (2)
C50.0516 (18)0.061 (2)0.070 (2)0.0065 (15)0.0149 (16)0.0112 (17)
C60.0435 (16)0.0517 (17)0.0555 (17)0.0010 (13)0.0178 (13)0.0140 (14)
C70.0438 (15)0.0473 (16)0.0449 (15)0.0002 (12)0.0148 (12)0.0062 (13)
C80.0437 (16)0.0604 (18)0.0476 (16)0.0026 (13)0.0203 (13)0.0019 (14)
C90.0524 (17)0.0546 (18)0.0395 (15)0.0007 (14)0.0164 (13)0.0018 (14)
C100.0435 (15)0.0447 (15)0.0380 (14)0.0031 (12)0.0134 (11)0.0018 (12)
C110.0513 (17)0.0456 (16)0.068 (2)0.0010 (13)0.0265 (15)0.0059 (15)
C120.0446 (17)0.073 (2)0.065 (2)0.0032 (15)0.0161 (15)0.0223 (17)
C140.0429 (15)0.0483 (16)0.0417 (15)0.0034 (12)0.0149 (12)0.0063 (13)
C150.0495 (17)0.0603 (19)0.0460 (16)0.0003 (14)0.0149 (13)0.0063 (14)
C160.0593 (19)0.0572 (19)0.067 (2)0.0058 (15)0.0294 (16)0.0038 (16)
C170.0450 (17)0.0612 (19)0.069 (2)0.0117 (14)0.0225 (15)0.0185 (17)
C180.0444 (17)0.073 (2)0.0546 (18)0.0015 (15)0.0068 (14)0.0076 (17)
C190.0525 (18)0.0566 (18)0.0469 (17)0.0055 (14)0.0126 (14)0.0013 (14)
Cl10.1220 (17)0.241 (3)0.1193 (16)0.0455 (18)0.0331 (14)0.0050 (18)
N10.0406 (13)0.0489 (14)0.0493 (13)0.0041 (10)0.0158 (10)0.0024 (11)
N20.0413 (13)0.0491 (14)0.0412 (12)0.0043 (10)0.0142 (10)0.0030 (11)
N30.0408 (13)0.0573 (15)0.0520 (14)0.0054 (11)0.0182 (11)0.0109 (12)
O10.0528 (13)0.0745 (15)0.0603 (13)0.0037 (11)0.0286 (11)0.0056 (11)
O20.0653 (14)0.0744 (16)0.0605 (13)0.0098 (12)0.0229 (11)0.0266 (12)
O30.0628 (15)0.110 (2)0.0520 (13)0.0030 (14)0.0131 (11)0.0062 (13)
C200.137 (13)0.56 (5)0.44 (4)0.0000.038 (18)0.000
Geometric parameters (Å, º) top
C1—O11.381 (4)C11—H11A0.9700
C1—C61.383 (5)C11—H11B0.9700
C1—C21.387 (5)C12—O31.413 (4)
C2—C31.369 (6)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.383 (6)C14—C151.375 (4)
C3—H30.9300C14—C191.379 (4)
C4—C51.380 (5)C14—N21.448 (3)
C4—H40.9300C15—C161.383 (4)
C5—C61.393 (4)C15—H150.9300
C5—H50.9300C16—C171.376 (5)
C6—C71.443 (4)C16—H160.9300
C7—N11.360 (3)C17—C181.370 (5)
C7—C81.364 (4)C17—H170.9300
C8—O11.379 (3)C18—C191.387 (4)
C8—C91.405 (4)C18—H180.9300
C9—O21.230 (4)C19—H190.9300
C9—N21.412 (4)Cl1—C201.483 (5)
C10—N11.315 (3)N3—H3B0.8600
C10—N31.343 (3)O3—H3A0.8200
C10—N21.391 (3)C20—H20A0.9700
C11—N31.445 (4)C20—H20B0.9700
C11—C121.508 (5)
O1—C1—C6112.2 (3)C11—C12—H12A110.0
O1—C1—C2124.3 (3)O3—C12—H12B110.0
C6—C1—C2123.4 (3)C11—C12—H12B110.0
C3—C2—C1116.0 (4)H12A—C12—H12B108.4
C3—C2—H2122.0C15—C14—C19120.8 (3)
C1—C2—H2122.0C15—C14—N2119.5 (2)
C2—C3—C4122.1 (3)C19—C14—N2119.7 (3)
C2—C3—H3119.0C14—C15—C16119.8 (3)
C4—C3—H3119.0C14—C15—H15120.1
C5—C4—C3121.6 (4)C16—C15—H15120.1
C5—C4—H4119.2C17—C16—C15119.8 (3)
C3—C4—H4119.2C17—C16—H16120.1
C4—C5—C6117.5 (4)C15—C16—H16120.1
C4—C5—H5121.2C18—C17—C16120.1 (3)
C6—C5—H5121.2C18—C17—H17120.0
C1—C6—C5119.5 (3)C16—C17—H17120.0
C1—C6—C7105.1 (3)C17—C18—C19120.8 (3)
C5—C6—C7135.4 (3)C17—C18—H18119.6
N1—C7—C8124.5 (3)C19—C18—H18119.6
N1—C7—C6129.7 (3)C14—C19—C18118.7 (3)
C8—C7—C6105.8 (3)C14—C19—H19120.7
C7—C8—O1112.8 (3)C18—C19—H19120.7
C7—C8—C9122.7 (3)C10—N1—C7114.5 (2)
O1—C8—C9124.3 (3)C10—N2—C9123.0 (2)
O2—C9—C8128.6 (3)C10—N2—C14120.7 (2)
O2—C9—N2120.3 (3)C9—N2—C14116.3 (2)
C8—C9—N2111.1 (3)C10—N3—C11120.8 (2)
N1—C10—N3119.1 (3)C10—N3—H3B119.6
N1—C10—N2123.9 (2)C11—N3—H3B119.6
N3—C10—N2116.9 (2)C8—O1—C1104.0 (2)
N3—C11—C12113.4 (3)C12—O3—H3A109.5
N3—C11—H11A108.9Cl1—C20—Cl1i161 (2)
C12—C11—H11A108.9Cl1—C20—H20A96.0
N3—C11—H11B108.9Cl1i—C20—H20A96.0
C12—C11—H11B108.9Cl1—C20—H20B96.0
H11A—C11—H11B107.7Cl1i—C20—H20B96.0
O3—C12—C11108.4 (2)H20A—C20—H20B103.4
O3—C12—H12A110.0
O1—C1—C2—C3178.0 (3)C16—C17—C18—C190.4 (5)
C6—C1—C2—C30.8 (5)C15—C14—C19—C180.1 (5)
C1—C2—C3—C40.5 (6)N2—C14—C19—C18178.4 (3)
C2—C3—C4—C51.0 (6)C17—C18—C19—C140.2 (5)
C3—C4—C5—C60.2 (5)N3—C10—N1—C7177.5 (2)
O1—C1—C6—C5177.3 (3)N2—C10—N1—C72.4 (4)
C2—C1—C6—C51.6 (5)C8—C7—N1—C103.2 (4)
O1—C1—C6—C71.3 (3)C6—C7—N1—C10177.5 (3)
C2—C1—C6—C7179.8 (3)N1—C10—N2—C95.1 (4)
C4—C5—C6—C11.0 (5)N3—C10—N2—C9174.8 (2)
C4—C5—C6—C7179.1 (3)N1—C10—N2—C14173.4 (3)
C1—C6—C7—N1177.8 (3)N3—C10—N2—C146.7 (4)
C5—C6—C7—N13.9 (6)O2—C9—N2—C10179.6 (3)
C1—C6—C7—C81.6 (3)C8—C9—N2—C101.9 (4)
C5—C6—C7—C8176.7 (3)O2—C9—N2—C141.9 (4)
N1—C7—C8—O1178.1 (2)C8—C9—N2—C14176.7 (2)
C6—C7—C8—O11.4 (3)C15—C14—N2—C1088.1 (3)
N1—C7—C8—C96.4 (5)C19—C14—N2—C1093.5 (3)
C6—C7—C8—C9174.1 (3)C15—C14—N2—C990.5 (3)
C7—C8—C9—O2175.0 (3)C19—C14—N2—C987.9 (3)
O1—C8—C9—O20.0 (5)N1—C10—N3—C111.8 (4)
C7—C8—C9—N23.5 (4)N2—C10—N3—C11178.1 (2)
O1—C8—C9—N2178.4 (3)C12—C11—N3—C1082.1 (3)
N3—C11—C12—O366.0 (3)C7—C8—O1—C10.6 (3)
C19—C14—C15—C160.2 (5)C9—C8—O1—C1174.8 (3)
N2—C14—C15—C16178.6 (3)C6—C1—O1—C80.5 (3)
C14—C15—C16—C170.1 (5)C2—C1—O1—C8179.4 (3)
C15—C16—C17—C180.2 (5)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3ii0.862.232.903 (3)136
O3—H3A···O2iii0.821.942.744 (3)167
Symmetry codes: (ii) x+1/2, y+3/2, z; (iii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H15N3O3·0.5CH2Cl2
Mr363.80
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)26.928 (2), 7.8931 (7), 17.3134 (15)
β (°) 110.638 (2)
V3)3443.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.941, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
6773, 3008, 2321
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.203, 1.04
No. of reflections3008
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.46

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3i0.862.232.903 (3)135.5
O3—H3A···O2ii0.821.942.744 (3)166.7
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z1/2.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D200724001) and the Science Research Project of Yunyang Medical College (No. 2006QDJ16).

References

First citationBodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187–189.  CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266–o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y. G., Liu, M. G. & Ding, M. W. (2008). Helv. Chim. Acta, pp. 862–872.  Google Scholar
First citationHu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMoneam, M., Geies, A., El-Naggar, G. & Mousa, S. (2004). J. Chin. Chem. Soc. 51, 1357–1366.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds