metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-5-carboxyl­ato-1-carboxyl­ato­methyl-2-oxidopyridinium)-κ2O5:O1;κ2O1:O5-[di­aqua­(phenan­throline-κ2N,N′)manganese(II)] dihydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.edu.cn

(Received 8 May 2009; accepted 11 May 2009; online 20 May 2009)

The centrosymmetric binuclear title complex, [Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2O, was obtained by the reaction of manganese chloride with 5-carb­oxy-1-carboxy­methyl-2-oxidopyridinium and 1,10-phenanthroline. The MnII atom is coordinated by two N atoms from the 1,10-phenanthroline ligand, two O atoms from two 5-carboxyl­ato-1-carboxyl­atomethyl-2-oxidopyridinium ligands and two water mol­ecules, leading to a distorted octahedral MnN2O4 environment. Inter­molecular O—H⋯O hydrogen bonds link neighbouring mol­ecules into a layer structure parallel to (001).

Related literature

For the synthesis of compounds with multicarboxyl­ate ligands and metal centers, see: He et al. (2008[He, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des. 8, 3586-3594.]); Huang et al. (2008[Huang, Y. G., Yuan, D. Q., Gong, Y. Q., Jiang, F. L. & Hong, M. C. (2008). J. Mol. Struct. 872, 99-104.]); Jiang et al. (2009[Jiang, M. X., Feng, Y. L., He, Y. H. & Su, H. (2009). Inorg. Chim. Acta, 362, 2856-2860.]); Tong et al. (2005[Tong, M. L., Hu, S., Wang, J., Kitagawa, S. & Ng, S. W. (2005). Cryst. Growth Des. 5, 837-839.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2O

  • Mr = 968.64

  • Triclinic, [P \overline 1]

  • a = 7.7726 (11) Å

  • b = 9.9519 (14) Å

  • c = 15.411 (3) Å

  • α = 98.744 (10)°

  • β = 103.553 (10)°

  • γ = 110.252 (7)°

  • V = 1051.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.60 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.934

  • 19359 measured reflections

  • 4779 independent reflections

  • 3675 reflections with I > 2σ(I)

  • Rint = 0.171

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.00

  • 4779 reflections

  • 307 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.831 (16) 1.967 (18) 2.773 (2) 163 (3)
O1W—H1WB⋯O3Wii 0.822 (15) 1.920 (15) 2.730 (2) 169 (3)
O2W—H2WA⋯O4 0.807 (16) 1.998 (15) 2.783 (2) 164 (2)
O2W—H2WA⋯O5 0.807 (16) 2.57 (3) 2.984 (2) 114 (2)
O2W—H2WB⋯O1iii 0.856 (16) 1.959 (16) 2.806 (2) 170 (3)
O3W—H3WA⋯O1 0.833 (17) 1.962 (19) 2.775 (2) 165 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is intensely research on the synthesis of compounds with multicarboxylate ligands and metal centers for their potential applications and coloful coordination methods. A large number of these compounds have been synthesized (He et al., 2008; Huang et al., 2008; Jiang et al.,2009; Tong et al., 2005). As illustrated in Fig. 1, the MnII atom is coordinated by two nitrogen atoms from one 1,10-phenanthroline molecule, two oxygen atoms from two 5-carboxyl-1-carboxymethyl-2-oxidopyridinium ligands and two wate molecules. Four coordinated atoms of N2, N3, O5 and O2A constitute the base of the octahedral, whereas O1W and O2W atoms occupy the apical position. The intermolecular hydrogen bonds play an important role in the formation of the one-dimensional chain. As shown in Fig. 2. The intermolecular O—H···O hydrogen bonds link the neibouring molecules to a one-dimensional chain.

Related literature top

For the synthesis of compounds with multicarboxylate ligands and metal centers, see: He et al. (2008); Huang et al. (2008); Jiang et al. (2009); Tong et al. (2005).

Experimental top

A mixture of 0.5 mmol 5-carboxyl-1-carboxymethyl-2-oxidopyridinium, 0.5 mmol 1,10-phenanthroline and 0.5 mmol of manganese chloride in 10 ml distilled water was stirred for 30 min at 323 K, then the reaction mixture was filtered and well shaped yellow crystals of the title compound was obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement top

The H atoms bonded to C atoms were positioned geometrically [aromatic C—H 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level [Symmetry code: (A) -x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. A view of the one-dimensional chain of the title compound. The O—H···O interactions are depicted by dashed lines.
Bis(µ-5-carboxylato-1-carboxylatomethyl-2-oxidopyridinium)- κ2O5:O1;κ2O1:O5- [diaqua(phenanthroline-κ2N,N')manganese(II)] dihydrate top
Crystal data top
[Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2OV = 1051.1 (3) Å3
Mr = 968.64Z = 1
Triclinic, P1F(000) = 498
Hall symbol: -P 1Dx = 1.530 Mg m3
a = 7.7726 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9519 (14) Åθ = 2.8–27.5°
c = 15.411 (3) ŵ = 0.68 mm1
α = 98.744 (10)°T = 293 K
β = 103.553 (10)°Block, yellow
γ = 110.252 (7)°0.60 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4779 independent reflections
Radiation source: fine-focus sealed tube3675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.171
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.885, Tmax = 0.934k = 1212
19359 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.083P)2 + 0.0025P]
where P = (Fo2 + 2Fc2)/3
4779 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.81 e Å3
9 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2Oγ = 110.252 (7)°
Mr = 968.64V = 1051.1 (3) Å3
Triclinic, P1Z = 1
a = 7.7726 (11) ÅMo Kα radiation
b = 9.9519 (14) ŵ = 0.68 mm1
c = 15.411 (3) ÅT = 293 K
α = 98.744 (10)°0.60 × 0.15 × 0.10 mm
β = 103.553 (10)°
Data collection top
Bruker APEXII area-detector
diffractometer
4779 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3675 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.934Rint = 0.171
19359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0519 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.81 e Å3
4779 reflectionsΔρmin = 0.79 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.34180 (4)0.38197 (3)0.24659 (2)0.03192 (14)
C10.8430 (3)0.9583 (2)0.60141 (17)0.0399 (5)
H1A0.73650.95750.55330.048*
H1B0.93351.06050.62840.048*
C20.7670 (3)0.89610 (18)0.67529 (14)0.0334 (4)
C31.1327 (3)0.9121 (2)0.60386 (16)0.0416 (5)
C41.2123 (3)0.8185 (2)0.56435 (17)0.0447 (5)
H41.34210.83880.59050.054*
C51.1068 (3)0.7009 (2)0.49014 (16)0.0397 (5)
H51.16400.64230.46630.048*
C60.9079 (3)0.66801 (19)0.44911 (15)0.0350 (5)
C70.8321 (3)0.75625 (19)0.48720 (15)0.0358 (5)
H70.70160.73440.46200.043*
C80.7808 (3)0.5421 (2)0.36561 (15)0.0363 (5)
C90.0500 (3)0.1365 (2)0.09487 (19)0.0561 (7)
H90.06410.09260.14330.067*
C100.1881 (4)0.0671 (3)0.0077 (2)0.0672 (9)
H100.29000.02260.00120.081*
C110.1736 (3)0.1298 (2)0.06335 (19)0.0565 (7)
H110.26540.08390.12120.068*
C120.0184 (3)0.2654 (2)0.04935 (16)0.0413 (5)
C130.0048 (3)0.3422 (3)0.11964 (18)0.0506 (6)
H130.08210.29970.17890.061*
C140.1498 (3)0.4747 (3)0.10162 (17)0.0495 (6)
H140.16070.52380.14810.059*
C150.2884 (3)0.5414 (2)0.01126 (16)0.0405 (5)
C160.4418 (4)0.6812 (2)0.01077 (19)0.0509 (6)
H160.45840.73360.03380.061*
C170.5659 (3)0.7382 (2)0.09913 (19)0.0509 (6)
H170.66600.83120.11560.061*
C180.5416 (3)0.6564 (2)0.16410 (17)0.0429 (5)
H180.62890.69620.22340.051*
C190.2732 (3)0.46827 (18)0.05867 (14)0.0331 (4)
C200.1150 (3)0.32712 (18)0.04029 (14)0.0338 (4)
O1W0.2082 (2)0.51934 (15)0.30069 (13)0.0469 (4)
H1WA0.107 (3)0.494 (3)0.3146 (19)0.056*
H1WB0.262 (3)0.6101 (18)0.3185 (18)0.056*
O10.6879 (2)0.96382 (15)0.71523 (12)0.0473 (4)
O2W0.5101 (2)0.24567 (16)0.20164 (12)0.0439 (4)
H2WA0.612 (3)0.297 (2)0.2403 (16)0.053*
H2WB0.459 (3)0.177 (2)0.2261 (16)0.053*
O20.7879 (2)0.78107 (15)0.68951 (12)0.0440 (4)
O31.2212 (2)1.02222 (18)0.67190 (14)0.0640 (6)
O3W0.5827 (3)1.18225 (16)0.65623 (18)0.0688 (6)
H3WA0.632 (4)1.129 (3)0.680 (2)0.083*
H3WB0.471 (3)1.149 (3)0.659 (2)0.083*
O40.84928 (19)0.46805 (15)0.32338 (12)0.0449 (4)
O50.6043 (2)0.52140 (18)0.34392 (12)0.0526 (5)
N10.9381 (2)0.87521 (16)0.56051 (13)0.0361 (4)
N20.3998 (2)0.52424 (16)0.14566 (13)0.0351 (4)
N30.0999 (2)0.26257 (16)0.11052 (13)0.0390 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03112 (19)0.02749 (17)0.0329 (2)0.00883 (12)0.00698 (15)0.00713 (12)
C10.0513 (11)0.0308 (8)0.0417 (13)0.0170 (8)0.0180 (10)0.0135 (8)
C20.0322 (9)0.0295 (8)0.0345 (12)0.0102 (7)0.0072 (8)0.0069 (7)
C30.0390 (10)0.0365 (9)0.0403 (13)0.0071 (8)0.0112 (9)0.0057 (8)
C40.0306 (9)0.0466 (10)0.0455 (14)0.0107 (8)0.0024 (9)0.0055 (9)
C50.0340 (9)0.0377 (9)0.0433 (13)0.0132 (8)0.0079 (9)0.0079 (8)
C60.0318 (9)0.0330 (8)0.0348 (12)0.0092 (7)0.0055 (8)0.0098 (8)
C70.0331 (9)0.0334 (8)0.0360 (12)0.0088 (7)0.0066 (8)0.0118 (8)
C80.0336 (9)0.0343 (8)0.0361 (12)0.0094 (7)0.0079 (8)0.0094 (8)
C90.0537 (13)0.0374 (10)0.0535 (17)0.0012 (9)0.0010 (12)0.0158 (10)
C100.0565 (14)0.0399 (11)0.066 (2)0.0090 (10)0.0065 (13)0.0106 (12)
C110.0491 (12)0.0441 (11)0.0491 (17)0.0073 (9)0.0067 (11)0.0029 (10)
C120.0399 (10)0.0406 (9)0.0383 (13)0.0177 (8)0.0041 (9)0.0038 (8)
C130.0523 (12)0.0593 (13)0.0370 (14)0.0270 (11)0.0037 (10)0.0076 (10)
C140.0587 (13)0.0624 (13)0.0383 (14)0.0315 (11)0.0165 (11)0.0235 (11)
C150.0467 (11)0.0407 (9)0.0425 (13)0.0223 (9)0.0184 (10)0.0151 (9)
C160.0622 (14)0.0437 (11)0.0559 (16)0.0202 (10)0.0270 (12)0.0265 (10)
C170.0540 (13)0.0328 (9)0.0608 (18)0.0071 (9)0.0225 (12)0.0149 (10)
C180.0422 (10)0.0306 (8)0.0455 (15)0.0061 (8)0.0113 (10)0.0039 (8)
C190.0364 (9)0.0291 (8)0.0360 (12)0.0156 (7)0.0120 (8)0.0068 (7)
C200.0350 (9)0.0301 (8)0.0347 (12)0.0144 (7)0.0076 (8)0.0050 (7)
O1W0.0401 (8)0.0323 (6)0.0712 (13)0.0146 (6)0.0243 (8)0.0096 (7)
O10.0589 (9)0.0417 (7)0.0532 (11)0.0275 (7)0.0266 (8)0.0131 (7)
O2W0.0446 (8)0.0401 (7)0.0439 (11)0.0140 (6)0.0143 (7)0.0084 (7)
O20.0562 (9)0.0403 (7)0.0529 (11)0.0258 (6)0.0295 (8)0.0251 (7)
O30.0481 (9)0.0496 (9)0.0649 (14)0.0037 (7)0.0082 (8)0.0152 (8)
O3W0.0591 (10)0.0344 (7)0.1180 (19)0.0198 (7)0.0337 (12)0.0212 (9)
O40.0352 (7)0.0413 (7)0.0505 (11)0.0110 (6)0.0120 (7)0.0020 (7)
O50.0323 (7)0.0601 (9)0.0504 (11)0.0180 (7)0.0006 (7)0.0080 (8)
N10.0384 (8)0.0304 (7)0.0386 (11)0.0108 (6)0.0135 (7)0.0104 (7)
N20.0344 (8)0.0282 (7)0.0383 (11)0.0085 (6)0.0113 (7)0.0058 (6)
N30.0376 (8)0.0286 (7)0.0411 (11)0.0059 (6)0.0063 (8)0.0085 (7)
Geometric parameters (Å, º) top
Mn1—O52.0761 (14)C10—C111.348 (4)
Mn1—O2i2.1066 (15)C10—H100.9300
Mn1—O1W2.1643 (15)C11—C121.409 (3)
Mn1—N22.2768 (18)C11—H110.9300
Mn1—N32.2788 (17)C12—C201.411 (3)
Mn1—O2W2.3237 (17)C12—C131.428 (3)
C1—N11.454 (3)C13—C141.341 (3)
C1—C21.518 (3)C13—H130.9300
C1—H1A0.9700C14—C151.436 (3)
C1—H1B0.9700C14—H140.9300
C2—O11.245 (2)C15—C191.394 (3)
C2—O21.254 (2)C15—C161.411 (3)
C3—O31.251 (2)C16—C171.370 (4)
C3—N11.391 (3)C16—H160.9300
C3—C41.423 (3)C17—C181.390 (3)
C4—C51.356 (3)C17—H170.9300
C4—H40.9300C18—N21.327 (2)
C5—C61.423 (3)C18—H180.9300
C5—H50.9300C19—N21.361 (3)
C6—C71.352 (3)C19—C201.444 (2)
C6—C81.503 (3)C20—N31.348 (3)
C7—N11.356 (2)O1W—H1WA0.831 (16)
C7—H70.9300O1W—H1WB0.822 (15)
C8—O41.240 (3)O2W—H2WA0.807 (16)
C8—O51.267 (2)O2W—H2WB0.856 (16)
C9—N31.324 (2)O2—Mn1i2.1066 (15)
C9—C101.401 (3)O3W—H3WA0.833 (17)
C9—H90.9300O3W—H3WB0.833 (17)
O5—Mn1—O2i105.32 (7)C10—C11—C12119.5 (2)
O5—Mn1—O1W89.47 (6)C10—C11—H11120.2
O2i—Mn1—O1W90.24 (6)C12—C11—H11120.2
O5—Mn1—N290.90 (7)C11—C12—C20116.6 (2)
O2i—Mn1—N2163.71 (6)C11—C12—C13123.4 (2)
O1W—Mn1—N288.34 (7)C20—C12—C13120.00 (19)
O5—Mn1—N3162.47 (8)C14—C13—C12121.1 (2)
O2i—Mn1—N391.35 (6)C14—C13—H13119.5
O1W—Mn1—N395.98 (7)C12—C13—H13119.5
N2—Mn1—N372.68 (6)C13—C14—C15120.6 (2)
O5—Mn1—O2W85.20 (6)C13—C14—H14119.7
O2i—Mn1—O2W89.67 (6)C15—C14—H14119.7
O1W—Mn1—O2W174.44 (6)C19—C15—C16117.6 (2)
N2—Mn1—O2W93.29 (6)C19—C15—C14120.02 (19)
N3—Mn1—O2W89.58 (6)C16—C15—C14122.4 (2)
N1—C1—C2112.73 (16)C17—C16—C15118.7 (2)
N1—C1—H1A109.0C17—C16—H16120.7
C2—C1—H1A109.0C15—C16—H16120.7
N1—C1—H1B109.0C16—C17—C18119.7 (2)
C2—C1—H1B109.0C16—C17—H17120.1
H1A—C1—H1B107.8C18—C17—H17120.1
O1—C2—O2126.3 (2)N2—C18—C17123.2 (2)
O1—C2—C1116.48 (17)N2—C18—H18118.4
O2—C2—C1117.18 (19)C17—C18—H18118.4
O3—C3—N1118.6 (2)N2—C19—C15123.24 (17)
O3—C3—C4126.2 (2)N2—C19—C20117.09 (18)
N1—C3—C4115.20 (17)C15—C19—C20119.66 (18)
C5—C4—C3122.79 (19)N3—C20—C12123.26 (18)
C5—C4—H4118.6N3—C20—C19118.13 (17)
C3—C4—H4118.6C12—C20—C19118.59 (19)
C4—C5—C6119.4 (2)Mn1—O1W—H1WA128.8 (17)
C4—C5—H5120.3Mn1—O1W—H1WB122.9 (17)
C6—C5—H5120.3H1WA—O1W—H1WB108 (2)
C7—C6—C5117.71 (18)Mn1—O2W—H2WA96 (2)
C7—C6—C8119.05 (17)Mn1—O2W—H2WB93.0 (18)
C5—C6—C8123.23 (19)H2WA—O2W—H2WB104 (2)
C6—C7—N1122.87 (18)C2—O2—Mn1i134.18 (16)
C6—C7—H7118.6H3WA—O3W—H3WB104 (2)
N1—C7—H7118.6C8—O5—Mn1140.26 (15)
O4—C8—O5124.86 (19)C7—N1—C3121.96 (18)
O4—C8—C6120.83 (18)C7—N1—C1119.42 (17)
O5—C8—C6114.31 (19)C3—N1—C1118.32 (17)
N3—C9—C10122.1 (2)C18—N2—C19117.50 (19)
N3—C9—H9118.9C18—N2—Mn1126.40 (15)
C10—C9—H9118.9C19—N2—Mn1116.08 (12)
C11—C10—C9120.2 (2)C9—N3—C20118.22 (18)
C11—C10—H10119.9C9—N3—Mn1125.89 (16)
C9—C10—H10119.9C20—N3—Mn1115.89 (12)
N1—C1—C2—O1178.22 (17)N2—Mn1—O5—C884.9 (3)
N1—C1—C2—O22.5 (3)N3—Mn1—O5—C864.8 (4)
O3—C3—C4—C5179.9 (3)O2W—Mn1—O5—C88.3 (3)
N1—C3—C4—C50.4 (3)C6—C7—N1—C32.2 (3)
C3—C4—C5—C60.0 (4)C6—C7—N1—C1175.7 (2)
C4—C5—C6—C70.6 (3)O3—C3—N1—C7179.1 (2)
C4—C5—C6—C8178.7 (2)C4—C3—N1—C71.5 (3)
C5—C6—C7—N11.6 (3)O3—C3—N1—C15.4 (3)
C8—C6—C7—N1177.63 (18)C4—C3—N1—C1175.09 (19)
C7—C6—C8—O4172.8 (2)C2—C1—N1—C787.7 (2)
C5—C6—C8—O46.4 (3)C2—C1—N1—C386.1 (2)
C7—C6—C8—O56.9 (3)C17—C18—N2—C190.3 (3)
C5—C6—C8—O5173.9 (2)C17—C18—N2—Mn1178.77 (18)
N3—C9—C10—C111.5 (5)C15—C19—N2—C181.4 (3)
C9—C10—C11—C120.2 (5)C20—C19—N2—C18177.59 (18)
C10—C11—C12—C200.3 (4)C15—C19—N2—Mn1179.97 (16)
C10—C11—C12—C13177.8 (3)C20—C19—N2—Mn11.1 (2)
C11—C12—C13—C14176.6 (2)O5—Mn1—N2—C189.93 (18)
C20—C12—C13—C141.5 (4)O2i—Mn1—N2—C18164.7 (2)
C12—C13—C14—C151.3 (4)O1W—Mn1—N2—C1879.51 (18)
C13—C14—C15—C190.2 (3)N3—Mn1—N2—C18176.30 (19)
C13—C14—C15—C16179.3 (2)O2W—Mn1—N2—C1895.17 (18)
C19—C15—C16—C170.7 (3)O5—Mn1—N2—C19171.54 (14)
C14—C15—C16—C17178.9 (2)O2i—Mn1—N2—C1913.9 (3)
C15—C16—C17—C181.7 (4)O1W—Mn1—N2—C1999.02 (14)
C16—C17—C18—N21.3 (4)N3—Mn1—N2—C192.23 (13)
C16—C15—C19—N20.9 (3)O2W—Mn1—N2—C1986.30 (14)
C14—C15—C19—N2179.6 (2)C10—C9—N3—C202.0 (4)
C16—C15—C19—C20178.02 (19)C10—C9—N3—Mn1177.0 (2)
C14—C15—C19—C201.5 (3)C12—C20—N3—C91.4 (3)
C11—C12—C20—N30.2 (3)C19—C20—N3—C9176.9 (2)
C13—C12—C20—N3178.5 (2)C12—C20—N3—Mn1177.73 (16)
C11—C12—C20—C19178.11 (19)C19—C20—N3—Mn13.9 (2)
C13—C12—C20—C190.1 (3)O5—Mn1—N3—C9161.2 (2)
N2—C19—C20—N31.9 (3)O2i—Mn1—N3—C90.9 (2)
C15—C19—C20—N3177.08 (18)O1W—Mn1—N3—C991.3 (2)
N2—C19—C20—C12179.65 (18)N2—Mn1—N3—C9177.7 (2)
C15—C19—C20—C121.4 (3)O2W—Mn1—N3—C988.7 (2)
O1—C2—O2—Mn1i17.7 (3)O5—Mn1—N3—C2017.9 (3)
C1—C2—O2—Mn1i161.47 (15)O2i—Mn1—N3—C20179.98 (15)
O4—C8—O5—Mn11.0 (4)O1W—Mn1—N3—C2089.60 (15)
C6—C8—O5—Mn1179.30 (18)N2—Mn1—N3—C203.23 (14)
O2i—Mn1—O5—C896.6 (3)O2W—Mn1—N3—C2090.35 (15)
O1W—Mn1—O5—C8173.3 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.83 (2)1.97 (2)2.773 (2)163 (3)
O1W—H1WB···O3Wiii0.82 (2)1.92 (2)2.730 (2)169 (3)
O2W—H2WA···O40.81 (2)2.00 (2)2.783 (2)164 (2)
O2W—H2WA···O50.81 (2)2.57 (3)2.984 (2)114 (2)
O2W—H2WB···O1i0.86 (2)1.96 (2)2.806 (2)170 (3)
O3W—H3WA···O10.83 (2)1.96 (2)2.775 (2)165 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C8H5NO5)2(C12H8N2)2(H2O)4]·2H2O
Mr968.64
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7726 (11), 9.9519 (14), 15.411 (3)
α, β, γ (°)98.744 (10), 103.553 (10), 110.252 (7)
V3)1051.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.60 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
19359, 4779, 3675
Rint0.171
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.00
No. of reflections4779
No. of parameters307
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.79

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.831 (16)1.967 (18)2.773 (2)163 (3)
O1W—H1WB···O3Wii0.822 (15)1.920 (15)2.730 (2)169 (3)
O2W—H2WA···O40.807 (16)1.998 (15)2.783 (2)164 (2)
O2W—H2WA···O50.807 (16)2.57 (3)2.984 (2)114 (2)
O2W—H2WB···O1iii0.856 (16)1.959 (16)2.806 (2)170 (3)
O3W—H3WA···O10.833 (17)1.962 (19)2.775 (2)165 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des. 8, 3586–3594.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Y. G., Yuan, D. Q., Gong, Y. Q., Jiang, F. L. & Hong, M. C. (2008). J. Mol. Struct. 872, 99–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, M. X., Feng, Y. L., He, Y. H. & Su, H. (2009). Inorg. Chim. Acta, 362, 2856–2860.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M. L., Hu, S., Wang, J., Kitagawa, S. & Ng, S. W. (2005). Cryst. Growth Des. 5, 837–839.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds