metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(1,10-phenanthroline-5,6-dione-κ2N,N′)cobalt(II) dinitrate

aJiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China.
*Correspondence e-mail: swjuan2000@126.com

(Received 11 May 2009; accepted 12 May 2009; online 20 May 2009)

The asymmetric unit of the title compound, [Co(C12H6N2O2)(H2O)4](NO3)2, consists of a CoII complex cation with twofold rotational symmetry and two nitrate anions. The CoII atom has a distorted octa­hedral geometry with the basal plane occupied by two 1,10-phenanthroline-5,6-dione N atoms and two aqua O atoms, with the other two aqua ligands in axial positions. The aqua ligands are involved in extensive hydrogen bonding to nitrate and 1,10-phenanthroline-5,6-dione O atoms.

Related literature

For related complexes of 1,10-phenanthroline-5,6-dione, see: Calderazzo et al. (1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.]); Fox et al. (1991[Fox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem. 30, 2895-2899.]); Onuegbu et al. (2007[Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309-m2310.]); Paw & Eisenberg (1997[Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287-2293.]); Ruiz et al. (1999[Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521-523.]); Shavaleev et al. (2003[Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003). Chem. Commun. pp. 1134-1135.]). For the structures of the related phenanthroline and phendione derivatives of cobalt(II), see: Liu et al. (2008[Liu, G.-X., Xu, H. & Ren, X.-M. (2008). Z. Anorg. Allg. Chem. 634, 927-930.]); Rubin-Preminger et al. (2008[Rubin-Preminger, J. M., Kozlov, L. & Goldberg, I. (2008). Acta Cryst. C64, m83-m86.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H6N2O2)(H2O)4](NO3)2

  • Mr = 465.20

  • Monoclinic, C 2/c

  • a = 12.7978 (12) Å

  • b = 10.6388 (10) Å

  • c = 13.0989 (12) Å

  • β = 105.248 (2)°

  • V = 1720.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 295 K

  • 0.18 × 0.14 × 0.13 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.830, Tmax = 0.873

  • 4509 measured reflections

  • 1695 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 1.04

  • 1695 reflections

  • 132 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2W1⋯O4 0.85 2.21 2.834 (6) 130
O2W—H2W2⋯O2i 0.85 2.14 2.957 (6) 161
O1W—H1W1⋯O1ii 0.85 2.00 2.793 (5) 154
O1W—H1W2⋯O3iii 0.85 2.19 2.864 (6) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+1, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phendione (1,10-phenanthroline-5,6-dione) is an excellent ligand that incorporates two functional groups with different coordination properties. Though phendione usually binds to metals through the imine N atoms (Onuegbu et al., 2007), in some cases both the N and O donors are used simultaneously (Calderazzo et al., 1999; Fox et al., 1991; Paw & Eisenberg, 1997; Ruiz et al., 1999; Shavaleev et al., 2003). In this paper we report the synthesis and characterization of the title compound, [CoL(H2O)4].(NO3)2 (L = 1,10-phenanthroline-5,6-dione).

The molecular structure of the title compound, shown in Fig. 1, is made up of a [CoL(H2O)4]2+ cation and two nitrate anions, which the cations have twofold rotational symmetry. The cobalt atom is coordinated to the two N atoms of a phendione ligand and four aqua ligands to form distorted octahedral geometry. The C=O bond length in the phendione ligand [1.208 (6) Å] is comparable to those observed in other complexes of phendione (Allen et al., 1987). The Co—N bond lengths [2.121 (3) Å] are similar to those values in related phenanthroline and phendione derivatives of cobalt(II) (Liu et al., 2008; Rubin-Preminger et al., 2008).

In addition to the strong O—H···O hydrogen bonds formed by the water ligands to both the nitrate and phendione O atoms, there are π-π stacking interactions between adjacent phendione ligands [perpendicular interplanar distance 3.582 (1) Å and centroid-to-centroid distance 3.823 (1) Å] (Fig. 2).

Related literature top

For related complexes of 1,10-phenanthroline-5,6-dione, see: Calderazzo et al. (1999); Fox et al. (1991); Onuegbu et al. (2007); Paw & Eisenberg (1997); Ruiz et al. (1999); Shavaleev et al. (2003). For the structures of the related phenanthroline and phendione derivatives of cobalt(II), see: Liu et al. (2008); Rubin-Preminger, Kozlov & Goldberg (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of cobalt(II) nitrate hexahydrate (29.1 mg, 0.10 mmol) and phendione (21.0 mg, 0.10 mmol) in methanol (8 ml) was stirred for 2 h. After filtering, the filtrate was left at room temperature for about one week and purple, block-like crystals of the title compound appeared [yield: 18 mg (39%)].

Refinement top

The water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O). The O—H distances of water were refined with idealized values of 0.85 Å. The aromatic H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, Uiso=1.2Ueqeq (C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hand H atoms are drawn as spheres of arbitrary radius. [Symmetry code, A: 1-x, y, 1/2-z].
[Figure 2] Fig. 2. Packing diagram of the title structure, showing the intermolecular O—H···O hydrogen bonds as dashed lines.
Tetraaqua(1,10-phenanthroline-5,6-dione-κ2N,N')cobalt(II) dinitrate top
Crystal data top
[Co(C12H6N2O2)(H2O)4](NO3)2F(000) = 948
Mr = 465.20Dx = 1.796 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2754 reflections
a = 12.7978 (12) Åθ = 2.5–26.8°
b = 10.6388 (10) ŵ = 1.08 mm1
c = 13.0989 (12) ÅT = 295 K
β = 105.248 (2)°Block, purple
V = 1720.7 (3) Å30.18 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
1695 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.830, Tmax = 0.873k = 513
4509 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.071P)2 + 5.1444P]
where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.68 e Å3
12 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Co(C12H6N2O2)(H2O)4](NO3)2V = 1720.7 (3) Å3
Mr = 465.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.7978 (12) ŵ = 1.08 mm1
b = 10.6388 (10) ÅT = 295 K
c = 13.0989 (12) Å0.18 × 0.14 × 0.13 mm
β = 105.248 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
1695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1549 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.873Rint = 0.020
4509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.68 e Å3
1695 reflectionsΔρmin = 0.61 e Å3
132 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.25979 (6)0.25000.0379 (3)
O1W0.5719 (3)0.3981 (3)0.3584 (3)0.0621 (10)
H1W10.58580.47260.34250.075*
H1W20.60360.38290.42280.075*
O10.4265 (4)0.3399 (4)0.1544 (5)0.1088 (17)
O2W0.3649 (3)0.2686 (3)0.3112 (3)0.0554 (9)
H2W10.30180.23700.29980.066*
H2W20.33760.34070.31490.066*
O20.2233 (3)0.0263 (4)0.2267 (3)0.0784 (12)
O30.1111 (4)0.0285 (6)0.0756 (4)0.107 (2)
O40.1792 (4)0.2017 (5)0.1484 (4)0.0996 (18)
N10.4417 (3)0.1042 (3)0.1501 (3)0.0394 (8)
N20.1708 (3)0.0851 (5)0.1490 (3)0.0649 (13)
C10.3828 (4)0.1087 (6)0.0491 (4)0.0585 (12)
H10.36460.18690.01760.070*
C20.3481 (5)0.0028 (7)0.0099 (4)0.0761 (15)
H20.30860.00970.08020.091*
C30.3716 (5)0.1113 (6)0.0347 (5)0.0735 (14)
H30.34700.18360.00400.088*
C40.4336 (4)0.1200 (4)0.1406 (4)0.0515 (11)
C50.4673 (3)0.0087 (4)0.1946 (3)0.0353 (8)
C60.4594 (3)0.2412 (4)0.1964 (4)0.0679 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0443 (5)0.0219 (4)0.0489 (5)0.0000.0149 (4)0.000
O1W0.094 (3)0.0341 (16)0.065 (2)0.0210 (17)0.0333 (19)0.0165 (15)
O10.133 (4)0.047 (2)0.169 (4)0.030 (2)0.080 (3)0.043 (2)
O2W0.0501 (18)0.0530 (19)0.069 (2)0.0035 (14)0.0271 (17)0.0139 (16)
O20.075 (3)0.090 (3)0.065 (2)0.006 (2)0.010 (2)0.033 (2)
O30.092 (3)0.166 (6)0.058 (3)0.050 (3)0.011 (2)0.001 (3)
O40.079 (3)0.089 (3)0.125 (4)0.014 (3)0.016 (3)0.063 (3)
N10.0454 (18)0.0375 (18)0.0322 (16)0.0019 (15)0.0046 (14)0.0049 (14)
N20.048 (2)0.092 (4)0.054 (2)0.014 (2)0.0108 (19)0.027 (2)
C10.052 (2)0.079 (3)0.039 (2)0.004 (2)0.0033 (18)0.010 (2)
C20.066 (3)0.117 (4)0.042 (2)0.025 (3)0.007 (2)0.015 (2)
C30.074 (3)0.090 (3)0.062 (3)0.036 (3)0.028 (2)0.041 (2)
C40.060 (3)0.047 (2)0.057 (2)0.0194 (19)0.0323 (19)0.0230 (18)
C50.0425 (19)0.0318 (18)0.0342 (19)0.0051 (15)0.0143 (16)0.0032 (14)
C60.083 (3)0.036 (2)0.104 (4)0.012 (2)0.059 (3)0.0202 (19)
Geometric parameters (Å, º) top
Co1—O1W2.084 (3)O4—N21.245 (7)
Co1—O1Wi2.084 (3)N1—C51.338 (5)
Co1—O2W2.091 (3)N1—C11.340 (5)
Co1—O2Wi2.091 (3)C1—C21.372 (9)
Co1—N12.121 (3)C1—H10.9300
Co1—N1i2.121 (3)C2—C31.346 (10)
O1W—H1W10.8500C2—H20.9300
O1W—H1W20.8502C3—C41.408 (8)
O1—C61.208 (6)C3—H30.9300
O2W—H2W10.8501C4—C51.388 (6)
O2W—H2W20.8500C4—C61.476 (7)
O2—N21.232 (6)C5—C5i1.473 (8)
O3—N21.218 (6)C6—C6i1.511 (10)
O1W—Co1—O1Wi90.1 (2)C1—N1—Co1126.6 (3)
O1W—Co1—O2W88.21 (14)O3—N2—O2119.6 (6)
O1Wi—Co1—O2W88.18 (14)O3—N2—O4121.7 (5)
O1W—Co1—O2Wi88.18 (14)O2—N2—O4118.7 (5)
O1Wi—Co1—O2Wi88.21 (14)N1—C1—C2122.7 (5)
O2W—Co1—O2Wi174.89 (19)N1—C1—H1118.7
O1W—Co1—N1173.05 (14)C2—C1—H1118.7
O1Wi—Co1—N196.32 (15)C3—C2—C1119.6 (5)
O2W—Co1—N194.55 (14)C3—C2—H2120.2
O2Wi—Co1—N189.44 (13)C1—C2—H2120.2
O1W—Co1—N1i96.32 (15)C2—C3—C4119.4 (5)
O1Wi—Co1—N1i173.05 (14)C2—C3—H3120.3
O2W—Co1—N1i89.44 (13)C4—C3—H3120.3
O2Wi—Co1—N1i94.55 (14)C5—C4—C3117.7 (5)
N1—Co1—N1i77.36 (18)C5—C4—C6119.6 (4)
Co1—O1W—H1W1125.1C3—C4—C6122.7 (4)
Co1—O1W—H1W2123.5N1—C5—C4122.4 (4)
H1W1—O1W—H1W2110.1N1—C5—C5i116.1 (2)
Co1—O2W—H2W1139.2C4—C5—C5i121.5 (3)
Co1—O2W—H2W2117.1O1—C6—C4121.8 (5)
H2W1—O2W—H2W289.0O1—C6—C6i119.7 (4)
C5—N1—C1118.2 (4)C4—C6—C6i118.0 (3)
C5—N1—Co1115.2 (2)
O1Wi—Co1—N1—C5176.8 (3)C2—C3—C4—C6177.7 (5)
O2W—Co1—N1—C588.2 (3)C1—N1—C5—C41.0 (6)
O2Wi—Co1—N1—C595.0 (3)Co1—N1—C5—C4178.8 (3)
N1i—Co1—N1—C50.2 (2)C1—N1—C5—C5i179.6 (4)
O1Wi—Co1—N1—C12.9 (4)Co1—N1—C5—C5i0.6 (5)
O2W—Co1—N1—C191.6 (4)C3—C4—C5—N10.8 (6)
O2Wi—Co1—N1—C185.2 (4)C6—C4—C5—N1176.5 (4)
N1i—Co1—N1—C1180.0 (5)C3—C4—C5—C5i179.8 (5)
C5—N1—C1—C20.1 (7)C6—C4—C5—C5i2.9 (7)
Co1—N1—C1—C2179.8 (4)C5—C4—C6—O1175.7 (3)
N1—C1—C2—C31.3 (9)C3—C4—C6—O11.4 (6)
C1—C2—C3—C41.5 (9)C5—C4—C6—C6i12.2 (6)
C2—C3—C4—C50.5 (8)C3—C4—C6—C6i170.7 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O40.852.212.834 (6)130
O2W—H2W2···O2ii0.852.142.957 (6)161
O1W—H1W1···O1iii0.852.002.793 (5)154
O1W—H1W2···O3iv0.852.192.864 (6)136
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C12H6N2O2)(H2O)4](NO3)2
Mr465.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)12.7978 (12), 10.6388 (10), 13.0989 (12)
β (°) 105.248 (2)
V3)1720.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.18 × 0.14 × 0.13
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.830, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
4509, 1695, 1549
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.04
No. of reflections1695
No. of parameters132
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.61

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O40.852.212.834 (6)129.9
O2W—H2W2···O2i0.852.142.957 (6)161.2
O1W—H1W1···O1ii0.852.002.793 (5)154.2
O1W—H1W2···O3iii0.852.192.864 (6)136.0
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Jiangxi Science and Technology Normal University for supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.  Web of Science CSD CrossRef Google Scholar
First citationFox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem. 30, 2895–2899.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, G.-X., Xu, H. & Ren, X.-M. (2008). Z. Anorg. Allg. Chem. 634, 927–930.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309–m2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationRubin-Preminger, J. M., Kozlov, L. & Goldberg, I. (2008). Acta Cryst. C64, m83–m86.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521–523.  Web of Science CSD CrossRef CAS Google Scholar
First citationShavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003). Chem. Commun. pp. 1134–1135.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds