organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-phenyl­carbamate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Pakistan, and cDepartment of Zoology, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 May 2009; accepted 12 May 2009; online 23 May 2009)

In the title compound, C13H11NO2, the aromatic rings are oriented at a dihedral angle of 42.52 (12)°. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which form infinite one-dimensional polymeric chains extending along the a axis. C—H⋯π inter­actions between the aromatic rings are also present.

Related literature

For related structures, see: Haufe et al. (2003[Haufe, G., Pietz, S., Wolker, D. & Frohlich, R. (2003). Eur. J. Org. Chem. pp. 2166-2175.]); Shah et al. (2008[Shah, F. A., Tahir, M. N. & Ali, S. (2008). Acta Cryst. E64, o1661.], 2009[Shah, F. A., Tahir, M. N., Ali, S., Ahmed, S. & Danish, M. (2009). Acta Cryst. E65, o1130.]); Xu & Qu (2008[Xu, Y.-H. & Qu, F. (2008). Acta Cryst. E64, o404.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO2

  • Mr = 213.23

  • Orthorhombic, P n a 21

  • a = 9.4734 (9) Å

  • b = 19.5825 (17) Å

  • c = 5.8509 (5) Å

  • V = 1085.42 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.22 × 0.12 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.988

  • 6579 measured reflections

  • 1505 independent reflections

  • 751 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.086

  • S = 0.97

  • 1505 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.14 2.976 (3) 165
C3—H3⋯Cg2ii 0.93 2.80 3.673 (4) 156
C10—H10⋯Cg1iii 0.93 2.86 3.599 (4) 137
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-1]. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1), is synthesized for investigation of biological activity like enzyme inhibition and antimicrobial activity. It is one of the members of a series of carbamates being synthesized in our laboratory.

Various crystal structures of N-phenylcarbamates with different attachments have been reported. Examples include (II) 4-nitrophenyl N-phenylcarbamate (Xu & Qu, 2008), (III) cis-4-fluorocyclohexyl N-phenylcarbamate, cis-4-hydroxycyclohexyl N-phenylcarbamate and 4-oxocyclohexyl N-phenylcarbamate (Haufe et al., 2003). The title compound is a N-phenylcarbamate with the simplest type of aromatic ring. In (I), the rings A (C1—C6) and B (C8—C13) are oriented at a dihedral angle of 42.49 (13)°. The title compound is stabilized in the form of infinite one-dimensional polymeric chains due to intermolecular N—H···O H-bonding. These chains extend along the crystallographic a axis (Table 1, Fig. 2). Similar infinite chains also due to intermolecular N—H···O H-bonding have also been found in 3-[(3,4-dichlorophenyl)aminocarbonyl]-propionic acid (Shah et al., 2009), 4-[(2-fluorophenyl)amino]-4-oxobutanoic acid (Shah et al., 2008). The packing may also be stabilized due to C—H···π interactions (Table 1).

Related literature top

For related structures, see: Haufe et al. (2003); Shah et al. (2008, 2009); Xu & Qu (2008).

Experimental top

A solution of aniline (0.913 ml, 0.01 mol) and dichloromethane (20 ml) was prepared. Phenylchloroformate (1.26 ml, 0.01 mol) was added dropwise to the magnetically stirring solution. The mixture turned to a suspension after 1 h due to stirring at room temperature. To obtain the final product, n-hexane (30 ml) was added and a precipitate was formed. The precipitate was filtered and recrystalized from ethylacetate and methanol (9:1).

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged. H-atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 Å for aromatic rings and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. A partial packing diagram showing infinite one-dimensional chains along the a axis.
Phenyl N-phenylcarbamate top
Crystal data top
C13H11NO2F(000) = 448
Mr = 213.23Dx = 1.305 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2241 reflections
a = 9.4734 (9) Åθ = 3.0–28.6°
b = 19.5825 (17) ŵ = 0.09 mm1
c = 5.8509 (5) ÅT = 296 K
V = 1085.42 (17) Å3Needle, colourless
Z = 40.22 × 0.12 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1505 independent reflections
Radiation source: fine-focus sealed tube751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 7.40 pixels mm-1θmax = 28.6°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2626
Tmin = 0.985, Tmax = 0.988l = 47
6579 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.028P)2]
where P = (Fo2 + 2Fc2)/3
1505 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C13H11NO2V = 1085.42 (17) Å3
Mr = 213.23Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.4734 (9) ŵ = 0.09 mm1
b = 19.5825 (17) ÅT = 296 K
c = 5.8509 (5) Å0.22 × 0.12 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1505 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
751 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.988Rint = 0.071
6579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.086H-atom parameters constrained
S = 0.97Δρmax = 0.13 e Å3
1505 reflectionsΔρmin = 0.17 e Å3
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2597 (2)0.32604 (11)0.9484 (4)0.0567 (9)
O20.0419 (2)0.29274 (9)0.8340 (5)0.0516 (8)
N10.2427 (3)0.23828 (12)0.7187 (5)0.0452 (10)
C10.2055 (3)0.37847 (16)1.0868 (7)0.0443 (14)
C20.2411 (4)0.44407 (15)1.0327 (7)0.0510 (14)
C30.2016 (4)0.49574 (16)1.1764 (7)0.0573 (15)
C40.1281 (4)0.48187 (15)1.3717 (7)0.0553 (14)
C50.0927 (4)0.41549 (16)1.4235 (7)0.0550 (14)
C60.1333 (4)0.36338 (15)1.2818 (7)0.0489 (13)
C70.1675 (3)0.28518 (15)0.8343 (7)0.0422 (11)
C80.1863 (3)0.19143 (14)0.5605 (7)0.0414 (13)
C90.0627 (3)0.15661 (14)0.5992 (6)0.0486 (13)
C100.0146 (4)0.11085 (16)0.4366 (8)0.0633 (18)
C110.0904 (5)0.09913 (18)0.2388 (8)0.0700 (16)
C120.2135 (5)0.13340 (19)0.2040 (7)0.0667 (18)
C130.2617 (4)0.17989 (15)0.3606 (7)0.0548 (13)
H10.332130.236770.743300.0544*
H20.291560.453480.900070.0616*
H30.224910.540631.140820.0689*
H40.102160.517151.469470.0664*
H50.041080.405991.554890.0657*
H60.111840.318331.318180.0584*
H90.011970.163700.733130.0581*
H100.069850.087730.460830.0757*
H110.057690.068140.130630.0838*
H120.265570.125160.072080.0799*
H130.344900.203720.333040.0658*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (14)0.0611 (13)0.0751 (19)0.0041 (12)0.0042 (13)0.0266 (14)
O20.0283 (12)0.0562 (12)0.0702 (18)0.0033 (11)0.0034 (13)0.0119 (12)
N10.0287 (15)0.0489 (15)0.058 (2)0.0041 (14)0.0041 (15)0.0099 (15)
C10.032 (2)0.052 (2)0.049 (3)0.0012 (16)0.003 (2)0.0058 (19)
C20.050 (2)0.054 (2)0.049 (3)0.0063 (18)0.000 (2)0.0073 (19)
C30.059 (3)0.0410 (19)0.072 (3)0.0043 (17)0.002 (2)0.006 (2)
C40.053 (2)0.049 (2)0.064 (3)0.0016 (17)0.001 (2)0.0118 (19)
C50.055 (2)0.059 (2)0.051 (3)0.0031 (17)0.006 (2)0.001 (2)
C60.048 (2)0.0386 (17)0.060 (3)0.0006 (16)0.002 (2)0.0033 (19)
C70.040 (2)0.0385 (15)0.048 (2)0.0018 (17)0.007 (2)0.0020 (17)
C80.039 (2)0.0362 (17)0.049 (3)0.0063 (15)0.006 (2)0.0044 (17)
C90.043 (2)0.0437 (17)0.059 (3)0.0001 (16)0.0045 (19)0.0024 (18)
C100.049 (3)0.053 (2)0.088 (4)0.0040 (18)0.021 (3)0.008 (2)
C110.079 (3)0.062 (2)0.069 (3)0.014 (2)0.024 (3)0.022 (2)
C120.077 (4)0.069 (2)0.054 (3)0.019 (2)0.002 (3)0.012 (2)
C130.052 (2)0.0485 (18)0.064 (3)0.0044 (17)0.007 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C11.405 (4)C9—C101.384 (5)
O1—C71.360 (4)C10—C111.381 (6)
O2—C71.199 (3)C11—C121.361 (6)
N1—C71.345 (4)C12—C131.370 (5)
N1—C81.409 (4)C2—H20.9300
N1—H10.8600C3—H30.9300
C1—C21.365 (4)C4—H40.9300
C1—C61.363 (5)C5—H50.9300
C2—C31.368 (5)C6—H60.9300
C3—C41.365 (6)C9—H90.9300
C4—C51.376 (4)C10—H100.9300
C5—C61.370 (5)C11—H110.9300
C8—C131.389 (5)C12—H120.9300
C8—C91.374 (4)C13—H130.9300
O2···C63.087 (5)C10···H3ix3.0700
O2···C93.005 (4)C13···H6iii3.0700
O2···N1i2.976 (3)H1···H132.4900
O1···H9ii2.7100H1···O2ii2.1400
O2···H5iii2.7500H1···H9ii2.5900
O2···H92.6100H3···C9x3.0400
O2···H1i2.1400H3···C10x3.0700
N1···O2ii2.976 (3)H4···H12xi2.5300
C1···C10iv3.579 (5)H5···O2v2.7500
C5···C7v3.576 (5)H5···C3xii3.0800
C6···O23.087 (5)H6···C72.9500
C6···C7v3.592 (6)H6···C8v2.9500
C7···C6iii3.592 (6)H6···C13v3.0700
C7···C5iii3.576 (5)H6···H13viii2.5700
C9···O23.005 (4)H9···O22.6100
C10···C1vi3.579 (5)H9···C72.8600
C2···H11iv3.0600H9···O1i2.7100
C3···H5vii3.0800H9···H1i2.5900
C6···H13viii3.0500H11···C2vi3.0600
C7···H92.8600H12···H4xiii2.5300
C7···H62.9500H13···H12.4900
C8···H6iii2.9500H13···C6xiv3.0500
C9···H3ix3.0400H13···H6xiv2.5700
C1—O1—C7118.6 (2)C8—C13—C12120.0 (3)
C7—N1—C8125.1 (3)C1—C2—H2120.00
C7—N1—H1117.00C3—C2—H2120.00
C8—N1—H1117.00C2—C3—H3120.00
O1—C1—C2117.6 (3)C4—C3—H3120.00
O1—C1—C6120.5 (3)C3—C4—H4120.00
C2—C1—C6121.5 (3)C5—C4—H4120.00
C1—C2—C3119.1 (4)C4—C5—H5120.00
C2—C3—C4120.5 (3)C6—C5—H5120.00
C3—C4—C5119.8 (3)C1—C6—H6120.00
C4—C5—C6120.1 (4)C5—C6—H6120.00
C1—C6—C5119.1 (3)C8—C9—H9120.00
O1—C7—O2124.4 (3)C10—C9—H9120.00
O1—C7—N1108.0 (2)C9—C10—H10120.00
O2—C7—N1127.5 (3)C11—C10—H10120.00
N1—C8—C9122.6 (3)C10—C11—H11120.00
C9—C8—C13119.8 (3)C12—C11—H11120.00
N1—C8—C13117.7 (3)C11—C12—H12120.00
C8—C9—C10119.3 (3)C13—C12—H12120.00
C9—C10—C11120.8 (3)C8—C13—H13120.00
C10—C11—C12119.3 (4)C12—C13—H13120.00
C11—C12—C13120.9 (4)
C7—O1—C1—C2119.0 (3)C1—C2—C3—C40.3 (6)
C7—O1—C1—C668.1 (4)C2—C3—C4—C50.4 (6)
C1—O1—C7—O23.9 (5)C3—C4—C5—C61.2 (6)
C1—O1—C7—N1178.6 (3)C4—C5—C6—C11.8 (6)
C8—N1—C7—O1172.7 (3)N1—C8—C9—C10179.4 (3)
C7—N1—C8—C13138.2 (3)C13—C8—C9—C100.6 (5)
C8—N1—C7—O24.7 (6)N1—C8—C13—C12178.2 (3)
C7—N1—C8—C943.0 (5)C9—C8—C13—C120.7 (5)
O1—C1—C2—C3173.7 (3)C8—C9—C10—C111.1 (5)
C2—C1—C6—C51.6 (6)C9—C10—C11—C120.3 (6)
C6—C1—C2—C30.9 (6)C10—C11—C12—C131.0 (6)
O1—C1—C6—C5174.2 (3)C11—C12—C13—C81.5 (6)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1; (v) x, y, z+1; (vi) x1/2, y+1/2, z1; (vii) x, y+1, z1/2; (viii) x1/2, y+1/2, z+1; (ix) x+1/2, y1/2, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z+3/2; (xii) x, y+1, z+1/2; (xiii) x+1/2, y1/2, z3/2; (xiv) x+1/2, y+1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.86002.14002.976 (3)165.00
C3—H3···Cg2x0.93002.80003.673 (4)156.00
C10—H10···Cg1vi0.93002.86003.599 (4)137.00
Symmetry codes: (ii) x+1/2, y+1/2, z; (vi) x1/2, y+1/2, z1; (x) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11NO2
Mr213.23
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)9.4734 (9), 19.5825 (17), 5.8509 (5)
V3)1085.42 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.12 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.985, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6579, 1505, 751
Rint0.071
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.086, 0.97
No. of reflections1505
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.86002.14002.976 (3)165.00
C3—H3···Cg2ii0.93002.80003.673 (4)156.00
C10—H10···Cg1iii0.93002.86003.599 (4)137.00
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1.
 

Acknowledgements

NA gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042-120599-PS2-156).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaufe, G., Pietz, S., Wolker, D. & Frohlich, R. (2003). Eur. J. Org. Chem. pp. 2166–2175.  Web of Science CSD CrossRef Google Scholar
First citationShah, F. A., Tahir, M. N. & Ali, S. (2008). Acta Cryst. E64, o1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShah, F. A., Tahir, M. N., Ali, S., Ahmed, S. & Danish, M. (2009). Acta Cryst. E65, o1130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-H. & Qu, F. (2008). Acta Cryst. E64, o404.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds