organic compounds
N-(3,4-Diethoxyphenyl)acetamide
aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com
In the title compound, C12H17NO3, the conformations of the N—H and C=O bonds are anti to each other. In the N—H⋯O hydrogen-bond interactions help to establish the packing.
Related literature
For the use of acetamides in the synthesis of biologically active compounds, see: Koike et al. (1999). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity, see: Vega-Noverola et al. (1989).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809018042/at2786sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018042/at2786Isup2.hkl
Ferrous powder (2.20 g, 0.039 mol), water (15 ml) and acetic acid (3 ml) were reflux for 4 h, the reaction mixture was cooled to room temperature. Then a solution of 1,2-diethoxy-4-nitrobenzene (2.10 g, 0.01 mol) in acetic acid (50 ml) was added to the mixture, the solution was reflux for 6 h. the mixture was filtered, and the resulting solution was added to water (150 ml), much white precipitate was appeared, the mixture was filtered again, the solid product was dissolved in 80 ml ethanol. and then set aside for five days to obtain colourless crystals [yield: 53%].
All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C12H17NO3 | F(000) = 480 |
Mr = 223.27 | Dx = 1.208 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2155 reflections |
a = 15.563 (8) Å | θ = 1.3–25.0° |
b = 8.661 (6) Å | µ = 0.09 mm−1 |
c = 9.305 (7) Å | T = 293 K |
β = 101.773 (14)° | Block, colourless |
V = 1227.8 (14) Å3 | 0.24 × 0.21 × 0.20 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2155 independent reflections |
Radiation source: fine-focus sealed tube | 1570 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −18→16 |
Tmin = 0.971, Tmax = 0.975 | k = −10→10 |
6295 measured reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3 |
2155 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C12H17NO3 | V = 1227.8 (14) Å3 |
Mr = 223.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.563 (8) Å | µ = 0.09 mm−1 |
b = 8.661 (6) Å | T = 293 K |
c = 9.305 (7) Å | 0.24 × 0.21 × 0.20 mm |
β = 101.773 (14)° |
Bruker SMART CCD area-detector diffractometer | 2155 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1570 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.975 | Rint = 0.034 |
6295 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.16 e Å−3 |
2155 reflections | Δρmin = −0.25 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.36147 (10) | 0.08455 (17) | 0.48242 (16) | 0.0426 (4) | |
C2 | 0.32424 (10) | 0.07894 (18) | 0.60656 (15) | 0.0451 (4) | |
H2 | 0.3519 | 0.1289 | 0.6920 | 0.054* | |
C3 | 0.24680 (10) | 0.00019 (18) | 0.60451 (16) | 0.0445 (4) | |
C4 | 0.20432 (11) | −0.07482 (19) | 0.47506 (17) | 0.0479 (4) | |
C5 | 0.24235 (11) | −0.0712 (2) | 0.35439 (18) | 0.0542 (5) | |
H5 | 0.2153 | −0.1223 | 0.2693 | 0.065* | |
C6 | 0.32090 (11) | 0.00790 (19) | 0.35673 (17) | 0.0513 (4) | |
H6 | 0.3458 | 0.0089 | 0.2739 | 0.062* | |
C7 | 0.24108 (11) | 0.0806 (2) | 0.84850 (17) | 0.0554 (5) | |
H7A | 0.2403 | 0.1891 | 0.8225 | 0.067* | |
H7B | 0.3013 | 0.0508 | 0.8887 | 0.067* | |
C8 | 0.18566 (14) | 0.0537 (3) | 0.9582 (2) | 0.0759 (6) | |
H8A | 0.2081 | 0.1128 | 1.0451 | 0.114* | |
H8B | 0.1866 | −0.0541 | 0.9827 | 0.114* | |
H8C | 0.1265 | 0.0850 | 0.9179 | 0.114* | |
C9 | 0.06962 (12) | −0.1888 (2) | 0.3449 (2) | 0.0656 (5) | |
H9A | 0.0967 | −0.2673 | 0.2944 | 0.079* | |
H9B | 0.0573 | −0.0991 | 0.2817 | 0.079* | |
C10 | −0.01353 (12) | −0.2493 (3) | 0.3827 (3) | 0.0869 (7) | |
H10A | −0.0539 | −0.2776 | 0.2942 | 0.130* | |
H10B | −0.0394 | −0.1707 | 0.4330 | 0.130* | |
H10C | −0.0004 | −0.3382 | 0.4449 | 0.130* | |
C11 | 0.48850 (10) | 0.20423 (18) | 0.39666 (17) | 0.0446 (4) | |
C12 | 0.56454 (11) | 0.3114 (2) | 0.44698 (19) | 0.0569 (5) | |
H12A | 0.5671 | 0.3393 | 0.5476 | 0.085* | |
H12B | 0.5570 | 0.4026 | 0.3872 | 0.085* | |
H12C | 0.6181 | 0.2606 | 0.4383 | 0.085* | |
N1 | 0.43955 (8) | 0.17335 (14) | 0.49706 (14) | 0.0459 (4) | |
H1 | 0.4583 | 0.2131 | 0.5824 | 0.055* | |
O1 | 0.20629 (7) | −0.01068 (13) | 0.72098 (11) | 0.0559 (4) | |
O2 | 0.12688 (7) | −0.14790 (14) | 0.48136 (13) | 0.0626 (4) | |
O3 | 0.47167 (8) | 0.15207 (13) | 0.27060 (12) | 0.0587 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0448 (9) | 0.0439 (9) | 0.0407 (8) | 0.0034 (7) | 0.0126 (7) | 0.0045 (7) |
C2 | 0.0490 (10) | 0.0488 (9) | 0.0385 (9) | −0.0023 (7) | 0.0114 (7) | −0.0007 (7) |
C3 | 0.0481 (10) | 0.0458 (9) | 0.0427 (9) | −0.0007 (7) | 0.0162 (7) | 0.0006 (7) |
C4 | 0.0476 (10) | 0.0486 (10) | 0.0475 (9) | −0.0042 (8) | 0.0103 (7) | −0.0004 (7) |
C5 | 0.0615 (11) | 0.0593 (11) | 0.0419 (9) | −0.0073 (9) | 0.0105 (8) | −0.0074 (8) |
C6 | 0.0602 (11) | 0.0569 (10) | 0.0398 (9) | −0.0008 (8) | 0.0174 (8) | −0.0008 (8) |
C7 | 0.0614 (11) | 0.0640 (11) | 0.0437 (9) | −0.0105 (9) | 0.0172 (8) | −0.0088 (8) |
C8 | 0.0879 (15) | 0.0933 (15) | 0.0524 (11) | −0.0225 (12) | 0.0279 (10) | −0.0150 (10) |
C9 | 0.0592 (12) | 0.0656 (12) | 0.0658 (12) | −0.0083 (9) | −0.0018 (9) | −0.0002 (9) |
C10 | 0.0583 (13) | 0.0939 (17) | 0.1049 (17) | −0.0174 (12) | 0.0083 (12) | −0.0065 (13) |
C11 | 0.0517 (10) | 0.0432 (9) | 0.0422 (9) | 0.0096 (7) | 0.0169 (7) | 0.0094 (7) |
C12 | 0.0590 (11) | 0.0557 (10) | 0.0611 (11) | −0.0030 (8) | 0.0239 (9) | 0.0089 (8) |
N1 | 0.0501 (8) | 0.0527 (8) | 0.0375 (7) | −0.0036 (6) | 0.0151 (6) | 0.0004 (6) |
O1 | 0.0606 (8) | 0.0681 (8) | 0.0443 (6) | −0.0172 (6) | 0.0226 (6) | −0.0093 (6) |
O2 | 0.0585 (8) | 0.0752 (9) | 0.0550 (7) | −0.0218 (6) | 0.0133 (6) | −0.0094 (6) |
O3 | 0.0723 (8) | 0.0664 (8) | 0.0423 (7) | 0.0002 (6) | 0.0231 (6) | 0.0029 (5) |
C1—C6 | 1.380 (2) | C8—H8B | 0.9600 |
C1—C2 | 1.395 (2) | C8—H8C | 0.9600 |
C1—N1 | 1.421 (2) | C9—O2 | 1.439 (2) |
C2—C3 | 1.382 (2) | C9—C10 | 1.503 (3) |
C2—H2 | 0.9300 | C9—H9A | 0.9700 |
C3—O1 | 1.3636 (19) | C9—H9B | 0.9700 |
C3—C4 | 1.409 (2) | C10—H10A | 0.9600 |
C4—C5 | 1.372 (2) | C10—H10B | 0.9600 |
C4—O2 | 1.3732 (19) | C10—H10C | 0.9600 |
C5—C6 | 1.398 (2) | C11—O3 | 1.2342 (19) |
C5—H5 | 0.9300 | C11—N1 | 1.3471 (19) |
C6—H6 | 0.9300 | C11—C12 | 1.502 (2) |
C7—O1 | 1.437 (2) | C12—H12A | 0.9600 |
C7—C8 | 1.483 (2) | C12—H12B | 0.9600 |
C7—H7A | 0.9700 | C12—H12C | 0.9600 |
C7—H7B | 0.9700 | N1—H1 | 0.8600 |
C8—H8A | 0.9600 | ||
C6—C1—C2 | 119.30 (15) | H8A—C8—H8C | 109.5 |
C6—C1—N1 | 125.16 (14) | H8B—C8—H8C | 109.5 |
C2—C1—N1 | 115.54 (13) | O2—C9—C10 | 106.70 (16) |
C3—C2—C1 | 120.95 (14) | O2—C9—H9A | 110.4 |
C3—C2—H2 | 119.5 | C10—C9—H9A | 110.4 |
C1—C2—H2 | 119.5 | O2—C9—H9B | 110.4 |
O1—C3—C2 | 124.51 (14) | C10—C9—H9B | 110.4 |
O1—C3—C4 | 115.80 (14) | H9A—C9—H9B | 108.6 |
C2—C3—C4 | 119.69 (14) | C9—C10—H10A | 109.5 |
C5—C4—O2 | 125.06 (15) | C9—C10—H10B | 109.5 |
C5—C4—C3 | 118.91 (15) | H10A—C10—H10B | 109.5 |
O2—C4—C3 | 116.03 (14) | C9—C10—H10C | 109.5 |
C4—C5—C6 | 121.37 (15) | H10A—C10—H10C | 109.5 |
C4—C5—H5 | 119.3 | H10B—C10—H10C | 109.5 |
C6—C5—H5 | 119.3 | O3—C11—N1 | 123.10 (16) |
C1—C6—C5 | 119.75 (15) | O3—C11—C12 | 121.56 (15) |
C1—C6—H6 | 120.1 | N1—C11—C12 | 115.32 (14) |
C5—C6—H6 | 120.1 | C11—C12—H12A | 109.5 |
O1—C7—C8 | 107.94 (14) | C11—C12—H12B | 109.5 |
O1—C7—H7A | 110.1 | H12A—C12—H12B | 109.5 |
C8—C7—H7A | 110.1 | C11—C12—H12C | 109.5 |
O1—C7—H7B | 110.1 | H12A—C12—H12C | 109.5 |
C8—C7—H7B | 110.1 | H12B—C12—H12C | 109.5 |
H7A—C7—H7B | 108.4 | C11—N1—C1 | 129.38 (14) |
C7—C8—H8A | 109.5 | C11—N1—H1 | 115.3 |
C7—C8—H8B | 109.5 | C1—N1—H1 | 115.3 |
H8A—C8—H8B | 109.5 | C3—O1—C7 | 117.45 (13) |
C7—C8—H8C | 109.5 | C4—O2—C9 | 117.83 (13) |
C6—C1—C2—C3 | −1.1 (2) | C4—C5—C6—C1 | −0.2 (3) |
N1—C1—C2—C3 | 178.02 (13) | O3—C11—N1—C1 | −2.1 (2) |
C1—C2—C3—O1 | −179.99 (14) | C12—C11—N1—C1 | 176.25 (14) |
C1—C2—C3—C4 | −0.4 (2) | C6—C1—N1—C11 | 1.4 (2) |
O1—C3—C4—C5 | −178.74 (14) | C2—C1—N1—C11 | −177.71 (14) |
C2—C3—C4—C5 | 1.7 (2) | C2—C3—O1—C7 | 7.5 (2) |
O1—C3—C4—O2 | 0.8 (2) | C4—C3—O1—C7 | −172.04 (14) |
C2—C3—C4—O2 | −178.79 (14) | C8—C7—O1—C3 | 178.46 (15) |
O2—C4—C5—C6 | 179.12 (15) | C5—C4—O2—C9 | −17.2 (2) |
C3—C4—C5—C6 | −1.4 (3) | C3—C4—O2—C9 | 163.33 (15) |
C2—C1—C6—C5 | 1.4 (2) | C10—C9—O2—C4 | −173.61 (15) |
N1—C1—C6—C5 | −177.64 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.08 | 2.915 (2) | 164 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H17NO3 |
Mr | 223.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.563 (8), 8.661 (6), 9.305 (7) |
β (°) | 101.773 (14) |
V (Å3) | 1227.8 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.24 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.971, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6295, 2155, 1570 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.119, 1.08 |
No. of reflections | 2155 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.25 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 2.08 | 2.915 (2) | 163.6 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province andthe Governor Foundation of Guizhou Province for financial support.
References
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197–198. Web of Science CrossRef CAS Google Scholar
Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetamide is an important class of medical intermidate. Many biologically active compounds are synthesized by using acetamide (Koike et al., 1999). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure determination of the title compound (I) has been carried out in order to elucidate the molecular conformation.
The molecule of the title compound, (Fig. 1), consists of a phenylacetamide group and two ethoxyl groups. The conformations of the N—H and C=O bonds are anti to each other. The C10—C9—O2—C4 and C8—C7—O1—C3 torsion angles are -173.61 (15)° and 178.46 (15)°, respectively. The title compound forms intermolecular H bonds whereas the N1 act as hydrogen-bond donor and the O3 act as hydrogen-bond acceptor, the distance of the N1—H1···O3 hydrogen bond is 2.915 (2) Å (Table 1). In the crystal structure, N—H···O hydrogen bonds interactions may help to establish the packing.