organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri-p-tolyl­pyridine

aKey Laboratory of Functional Organometallic Materials, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: sptang88@163.com

(Received 20 May 2009; accepted 21 May 2009; online 29 May 2009)

In the title compound, C26H23N, the complete molecule is generated by crystallographic mirror symmetry, with the N atom and four C atoms lying on the reflection plane. The dihedral angles between the pyridine ring and pendant benzene rings are 2.9 (1), 14.1 (1) and 14.1 (1)°. Neighbouring mol­ecules are stabilized through inter­molecular ππ inter­actions along the c axis [centroid-to-centroid distance = 3.804 (2) Å], forming one-dimensional chains.

Related literature

For the syntheses of related 2,4,6-triaryl­pyridine compounds, see: Hou et al. (2005[Hou, L., Li, D., Shi, W. J., Yin, Y. G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825-7830.]); Huang et al. (2005[Huang, X. Q., Li, H. X., Wang, J. X. & Jia, X. F. (2005). Chin. Chem. Lett. 16, 607-608.]); Tewari et al. (1981[Tewari, R. S., Dubey, A. K., Misra, N. K. & Dixit, P. D. (1981). J. Chem. Eng. Data, 26, 106-108.]); Yang et al. (2005[Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278-3279.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23N

  • Mr = 349.45

  • Orthorhombic, P n m a

  • a = 15.337 (5) Å

  • b = 20.778 (7) Å

  • c = 6.322 (2) Å

  • V = 2014.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.24 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.986

  • 7912 measured reflections

  • 2037 independent reflections

  • 924 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.139

  • wR(F2) = 0.342

  • S = 1.26

  • 2037 reflections

  • 132 parameters

  • 47 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4,6-Triarylpyridines are used as good building blocks in supramolecular chemistry because of their stacking ability, directional H-bonding and coordination, and which have also been prepared by many procedures (Hou et al., 2005; Huang et al., 2005; Tewari et al., 1981; Yang et al., 2005). We here reported the synthesis and crystal structure of 2,4,6-tri-p-tolylpyridine.

As shown in Fig.1, the title compound is a neutral organic molecule with a mirror symmetry through the methyl C15 atom and N1 atom of the central pyridine. The central pyridine is almost coplanar with the C11-14 benzene ring with a dihedral angle of 2.9 (1) °, however, which form bigger dihedral angles of 14.1 (1) ° with the other two outer benzene rings, thus the whole molecule is nonplanar. In the crystal packing, neighboring molecules form intermolecular ππ interactions with the centroid- to-centroid distances of 3.804 (2) Å to give a one-dimensional chain along the c-axis.

Related literature top

For the related synthesis of 2,4,6-triarylpyridine compounds, see: Hou et al. (2005); Huang et al. (2005); Tewari et al. (1981); Yang et al. (2005).

Experimental top

The title compound was synthesized with a modified procedure (Yang et al., 2005). A mixture of 5-tri-p-tolyl-pentane-1,5-dione (1.85 g, 5 mmol), ammonium acetate (3.85 g, 50 mmol) and ethanol (60 mL) was refluxed for 20 h. Upon cooling to room temperature, a precipitate was filtered, washed with ethanol/water (1:1) and dried to afford the product, purified by column chromatography on silica with petroleum/ethyl acetate. A white solid was obtained and was further recrystallized from ethanol to give colourless crystals [yield: 0.85 g, 48.6%].

Refinement top

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 and 0.96 Å) and refined as riding, with U(H) = 1.2Ueq(C) for benzenel H atoms, and C—H = 0.96 Å and Uiso = 1.5Ueq (C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius.
2,4,6-Tri-p-tolylpyridine top
Crystal data top
C26H23NF(000) = 744
Mr = 349.45Dx = 1.152 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 562 reflections
a = 15.337 (5) Åθ = 2.7–22.4°
b = 20.778 (7) ŵ = 0.07 mm1
c = 6.322 (2) ÅT = 295 K
V = 2014.8 (11) Å3Prism, colourless
Z = 40.24 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
2037 independent reflections
Radiation source: fine-focus sealed tube924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1718
Tmin = 0.975, Tmax = 0.986k = 2025
7912 measured reflectionsl = 75
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.139Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.342H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0923P)2 + 1.1054P]
where P = (Fo2 + 2Fc2)/3
2037 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.27 e Å3
47 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H23NV = 2014.8 (11) Å3
Mr = 349.45Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.337 (5) ŵ = 0.07 mm1
b = 20.778 (7) ÅT = 295 K
c = 6.322 (2) Å0.24 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
2037 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
924 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.986Rint = 0.067
7912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.13947 restraints
wR(F2) = 0.342H-atom parameters constrained
S = 1.26Δρmax = 0.27 e Å3
2037 reflectionsΔρmin = 0.20 e Å3
132 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4178 (6)0.5536 (4)0.7562 (16)0.180 (4)
H1A0.41970.55010.90760.270*
H1B0.37760.58690.71650.270*
H1C0.47490.56390.70380.270*
C20.3882 (5)0.4900 (4)0.6625 (15)0.139 (3)
C30.3948 (6)0.4331 (5)0.7686 (15)0.158 (3)
H30.41710.43340.90530.190*
C40.3696 (5)0.3750 (4)0.6812 (13)0.143 (3)
H40.37500.33780.76240.172*
C50.3376 (4)0.3699 (4)0.4833 (11)0.098 (2)
C60.3283 (6)0.4267 (5)0.3786 (13)0.139 (3)
H60.30500.42610.24280.167*
C70.3522 (6)0.4853 (4)0.4650 (15)0.163 (4)
H70.34350.52260.38660.196*
C80.3116 (4)0.3075 (3)0.3878 (9)0.0859 (18)
C90.2622 (3)0.3058 (2)0.2112 (8)0.0646 (14)
H90.24550.34430.14790.077*
N10.3373 (5)0.25000.4758 (13)0.123 (3)
C100.2366 (5)0.25000.1249 (12)0.075 (2)
C110.1802 (4)0.25000.0662 (12)0.0673 (19)
C120.1525 (4)0.3049 (3)0.1594 (11)0.107 (2)
H120.17130.34420.10570.128*
C130.0972 (5)0.3044 (3)0.3317 (11)0.121 (2)
H130.07940.34380.38730.145*
C140.0676 (6)0.25000.4240 (15)0.103 (3)
C150.0081 (6)0.25000.6115 (15)0.133 (3)
H15A0.03350.27530.72270.199*0.50
H15B0.04720.26810.57220.199*0.50
H15C0.00010.20660.66000.199*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.158 (7)0.165 (7)0.217 (9)0.049 (6)0.066 (7)0.093 (7)
C20.111 (5)0.149 (7)0.157 (7)0.030 (5)0.054 (5)0.053 (5)
C30.153 (5)0.181 (7)0.141 (6)0.015 (5)0.063 (5)0.029 (5)
C40.142 (5)0.165 (6)0.122 (5)0.027 (4)0.049 (5)0.006 (5)
C50.074 (4)0.142 (5)0.078 (4)0.003 (4)0.022 (3)0.008 (4)
C60.157 (7)0.141 (7)0.119 (7)0.036 (6)0.052 (5)0.024 (6)
C70.186 (9)0.132 (7)0.171 (9)0.057 (6)0.061 (8)0.042 (6)
C80.063 (3)0.120 (5)0.075 (4)0.002 (4)0.002 (3)0.001 (4)
C90.054 (3)0.080 (3)0.060 (3)0.011 (3)0.013 (3)0.001 (3)
N10.089 (6)0.180 (9)0.098 (6)0.0000.011 (5)0.000
C100.055 (4)0.103 (6)0.065 (5)0.0000.011 (4)0.000
C110.060 (4)0.076 (5)0.066 (5)0.0000.002 (4)0.000
C120.119 (5)0.092 (4)0.110 (5)0.002 (4)0.037 (4)0.003 (4)
C130.114 (5)0.141 (6)0.108 (5)0.004 (4)0.038 (4)0.031 (4)
C140.078 (5)0.152 (7)0.079 (5)0.0000.020 (4)0.000
C150.098 (6)0.216 (9)0.085 (6)0.0000.022 (5)0.000
Geometric parameters (Å, º) top
C1—C21.518 (10)C9—C101.340 (6)
C1—H1A0.9600C9—H90.9300
C1—H1B0.9600N1—C8i1.375 (5)
C1—H1C0.9600C10—C9i1.340 (6)
C2—C31.361 (8)C10—C111.486 (10)
C2—C71.369 (8)C11—C12i1.352 (6)
C3—C41.384 (10)C11—C121.352 (6)
C3—H30.9300C12—C131.381 (8)
C4—C51.348 (9)C12—H120.9300
C4—H40.9300C13—C141.352 (6)
C5—C61.361 (9)C13—H130.9300
C5—C81.484 (8)C14—C13i1.352 (6)
C6—C71.384 (9)C14—C151.495 (12)
C6—H60.9300C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C91.350 (7)C15—H15C0.9600
C8—N11.375 (5)
C2—C1—H1A109.5N1—C8—C5121.1 (6)
C2—C1—H1B109.5C10—C9—C8121.5 (6)
H1A—C1—H1B109.5C10—C9—H9119.2
C2—C1—H1C109.5C8—C9—H9119.2
H1A—C1—H1C109.5C8i—N1—C8120.6 (9)
H1B—C1—H1C109.5C9—C10—C9i119.8 (7)
C3—C2—C7114.7 (9)C9—C10—C11120.1 (4)
C3—C2—C1122.7 (8)C9i—C10—C11120.1 (4)
C7—C2—C1122.6 (9)C12i—C11—C12115.0 (8)
C2—C3—C4122.7 (8)C12i—C11—C10122.5 (4)
C2—C3—H3118.7C12—C11—C10122.5 (4)
C4—C3—H3118.7C11—C12—C13122.1 (6)
C5—C4—C3122.7 (9)C11—C12—H12118.9
C5—C4—H4118.6C13—C12—H12118.9
C3—C4—H4118.6C14—C13—C12123.5 (7)
C4—C5—C6114.9 (8)C14—C13—H13118.2
C4—C5—C8123.0 (7)C12—C13—H13118.2
C6—C5—C8122.1 (6)C13—C14—C13i113.6 (9)
C5—C6—C7122.9 (8)C13—C14—C15123.2 (4)
C5—C6—H6118.5C13i—C14—C15123.2 (4)
C7—C6—H6118.5C14—C15—H15A109.5
C2—C7—C6122.0 (9)C14—C15—H15B109.5
C2—C7—H7119.0H15A—C15—H15B109.5
C6—C7—H7119.0C14—C15—H15C109.5
C9—C8—N1118.2 (7)H15A—C15—H15C109.5
C9—C8—C5120.6 (5)H15B—C15—H15C109.5
C7—C2—C3—C41.9 (14)C5—C8—C9—C10178.7 (6)
C1—C2—C3—C4178.5 (8)C9—C8—N1—C8i1.3 (11)
C2—C3—C4—C50.8 (15)C5—C8—N1—C8i178.9 (5)
C3—C4—C5—C62.7 (12)C8—C9—C10—C9i1.8 (10)
C3—C4—C5—C8179.1 (7)C8—C9—C10—C11178.3 (5)
C4—C5—C6—C71.8 (12)C9—C10—C11—C12i179.9 (6)
C8—C5—C6—C7180.0 (7)C9i—C10—C11—C12i0.2 (10)
C3—C2—C7—C62.8 (14)C9—C10—C11—C120.2 (10)
C1—C2—C7—C6177.6 (8)C9i—C10—C11—C12179.9 (6)
C5—C6—C7—C21.0 (15)C12i—C11—C12—C132.5 (12)
C4—C5—C8—C9164.8 (6)C10—C11—C12—C13177.3 (6)
C6—C5—C8—C913.2 (10)C11—C12—C13—C141.3 (12)
C4—C5—C8—N115.4 (10)C12—C13—C14—C13i0.0 (15)
C6—C5—C8—N1166.6 (7)C12—C13—C14—C15179.6 (8)
N1—C8—C9—C101.5 (9)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC26H23N
Mr349.45
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)15.337 (5), 20.778 (7), 6.322 (2)
V3)2014.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7912, 2037, 924
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.139, 0.342, 1.26
No. of reflections2037
No. of parameters132
No. of restraints47
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Key Discipline Construct Program of Hunan province and the Foundation of Hunan Province Education Office (grant No. 08 C178) for supporting this study.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, L., Li, D., Shi, W. J., Yin, Y. G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825–7830.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, X. Q., Li, H. X., Wang, J. X. & Jia, X. F. (2005). Chin. Chem. Lett. 16, 607–608.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTewari, R. S., Dubey, A. K., Misra, N. K. & Dixit, P. D. (1981). J. Chem. Eng. Data, 26, 106–108.  CrossRef CAS Web of Science Google Scholar
First citationYang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278–3279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds