organic compounds
4-Benzyl-6-p-tolylpyridazin-3(2H)-one
aLaboratoire des Substances Naturelles et Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, bLaboratoire de Chimie de Coordination, UPR–CNRS 8241, 205 Route de Narbonne, 31077 Toulouse Cedex, France, and cLaboratoire de Physico-Chimie des Matériaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco
*Correspondence e-mail: mohamedazrour@yahoo.fr
The title compound, C18H16N2O, is a new dihydropyridazin-3(2H)-one derivative synthesized in one step by condensation of α-benzylidene-γ-tolylbutenolide with hydrazine. The molecule is not planar; the tolyl and pyridazine rings are twisted with respect to each other making a dihedral angle of 27.35 (9)° and the benzyl ring is nearly perpendicular to the pyridazine ring with a dihedral angle of 85.24 (5)°. In the inversion dimers arise, being linked by pairs of N—H⋯O hydrogen bonds. Weak C—H⋯O hydrogen bonds and weak offset π–π stacking stabilize the packing. The π–π stacking occurs between the pyridazine rings of symmetry-related molecules, with a centroid–centroid distance of 3.748 Å, an interplanar distance of 3.605 Å and a slippage of 1.024 Å.
Related literature
For related compounds displaying biological activities, see: Sayed et al. (2002); Frolov et al. (2004); Piaz et al. (1994); Coelho et al. (2004); Malinka et al. (2004); Ogretir et al. (2002); Okcelik et al. (2003); Sotelo et al. (2003); Youssef et al. (2005). For related structures, see: Cao et al. (2003); Daran et al. (2006); Fihi et al. (1995); Filler & Piasek (1973); Roussel et al. (2000, 2003). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809018376/bg2256sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018376/bg2256Isup2.hkl
α-benzylidene-γ-tolylbutenolide (1) was synthesized according to the literature procedure (Filler & Piasek, 1973). (0.036 g, 1.125 mmol) of hydrazine was added to a solution of (1) (0.2 g, 0.76 mmol) in toluene (25 ml) and the mixture was stirred at reflux for 24 h. The solvent was then evaporated under reduced pressure. The residue was recrystallized from ethanol, and purified by on silica gel (eluant: ethyl acetate / hexane: 20 / 80). The pyridazinone was recrystallized from ethanol.
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98Å (methyl) or 0.95 Å (aromatic) and N—H =0.88 Å with Uiso(H) = 1.2Ueq(C or N)or Uiso(H) = 1.5Ueq(Cmethyl).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C18H16N2O | F(000) = 584 |
Mr = 276.33 | Dx = 1.281 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3436 reflections |
a = 7.2487 (4) Å | θ = 2.8–32.0° |
b = 10.4469 (5) Å | µ = 0.08 mm−1 |
c = 19.1869 (9) Å | T = 180 K |
β = 99.598 (5)° | Fragment, colourless |
V = 1432.62 (12) Å3 | 0.50 × 0.48 × 0.08 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer | 2914 independent reflections |
Radiation source: fine-focus sealed tube | 1622 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 26.4°, θmin = 2.9° |
ω and ϕ scans | h = −7→9 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −12→13 |
Tmin = 0.965, Tmax = 0.993 | l = −23→23 |
10925 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0651P)2 + 0.0125P] where P = (Fo2 + 2Fc2)/3 |
2914 reflections | (Δ/σ)max = 0.008 |
190 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C18H16N2O | V = 1432.62 (12) Å3 |
Mr = 276.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2487 (4) Å | µ = 0.08 mm−1 |
b = 10.4469 (5) Å | T = 180 K |
c = 19.1869 (9) Å | 0.50 × 0.48 × 0.08 mm |
β = 99.598 (5)° |
Oxford Diffraction Xcalibur diffractometer | 2914 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 1622 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.993 | Rint = 0.044 |
10925 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.20 e Å−3 |
2914 reflections | Δρmin = −0.20 e Å−3 |
190 parameters |
Experimental. All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.98Å (methyl) and N—H = 0.86 Å with Uiso(H) = xUeq(C or N) where x=1.2 or 1.5(methyl). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlis RED (Oxford Diffraction, 2006) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.58992 (17) | −0.03563 (12) | 0.42289 (6) | 0.0387 (4) | |
N1 | 0.8190 (2) | 0.19591 (14) | 0.54067 (8) | 0.0336 (4) | |
N2 | 0.7005 (2) | 0.10629 (14) | 0.50803 (7) | 0.0335 (4) | |
H2 | 0.6067 | 0.0848 | 0.5294 | 0.040* | |
C1 | 0.9570 (3) | 0.22886 (16) | 0.50837 (9) | 0.0296 (4) | |
C2 | 0.7092 (3) | 0.04582 (17) | 0.44647 (9) | 0.0297 (4) | |
C3 | 0.8621 (2) | 0.08373 (17) | 0.41181 (9) | 0.0296 (4) | |
C4 | 0.9807 (2) | 0.17325 (17) | 0.44281 (9) | 0.0309 (4) | |
H4 | 1.0821 | 0.1999 | 0.4206 | 0.037* | |
C11 | 1.0846 (3) | 0.32907 (17) | 0.54285 (9) | 0.0314 (5) | |
C12 | 1.0234 (3) | 0.41994 (17) | 0.58693 (9) | 0.0360 (5) | |
H12 | 0.8983 | 0.4168 | 0.5956 | 0.043* | |
C13 | 1.1423 (3) | 0.51460 (18) | 0.61821 (10) | 0.0398 (5) | |
H13 | 1.0974 | 0.5757 | 0.6480 | 0.048* | |
C14 | 1.3252 (3) | 0.52198 (18) | 0.60691 (10) | 0.0392 (5) | |
C15 | 1.3863 (3) | 0.43020 (19) | 0.56396 (10) | 0.0414 (5) | |
H15 | 1.5122 | 0.4326 | 0.5561 | 0.050* | |
C16 | 1.2684 (3) | 0.33473 (18) | 0.53210 (9) | 0.0372 (5) | |
H16 | 1.3141 | 0.2731 | 0.5028 | 0.045* | |
C17 | 1.4555 (3) | 0.6246 (2) | 0.64031 (11) | 0.0547 (6) | |
H17A | 1.5780 | 0.6138 | 0.6259 | 0.082* | 0.50 |
H17B | 1.4691 | 0.6182 | 0.6919 | 0.082* | 0.50 |
H17C | 1.4044 | 0.7087 | 0.6250 | 0.082* | 0.50 |
H17D | 1.3897 | 0.6800 | 0.6693 | 0.082* | 0.50 |
H17E | 1.4986 | 0.6756 | 0.6033 | 0.082* | 0.50 |
H17F | 1.5633 | 0.5851 | 0.6702 | 0.082* | 0.50 |
C31 | 0.8735 (3) | 0.02039 (18) | 0.34214 (9) | 0.0359 (5) | |
H31A | 0.9169 | −0.0688 | 0.3513 | 0.043* | |
H31B | 0.7463 | 0.0170 | 0.3138 | 0.043* | |
C32 | 1.0013 (3) | 0.08604 (17) | 0.29952 (9) | 0.0292 (4) | |
C33 | 0.9342 (3) | 0.18115 (18) | 0.25246 (9) | 0.0376 (5) | |
H33 | 0.8063 | 0.2054 | 0.2473 | 0.045* | |
C34 | 1.0500 (3) | 0.2416 (2) | 0.21276 (10) | 0.0438 (5) | |
H34 | 1.0024 | 0.3074 | 0.1806 | 0.053* | |
C35 | 1.2341 (3) | 0.20623 (19) | 0.21994 (11) | 0.0467 (6) | |
H35 | 1.3142 | 0.2470 | 0.1923 | 0.056* | |
C36 | 1.3030 (3) | 0.11236 (19) | 0.26684 (11) | 0.0454 (6) | |
H36 | 1.4309 | 0.0881 | 0.2719 | 0.054* | |
C37 | 1.1874 (3) | 0.05337 (18) | 0.30651 (10) | 0.0358 (5) | |
H37 | 1.2363 | −0.0111 | 0.3394 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0398 (8) | 0.0418 (8) | 0.0372 (8) | −0.0120 (7) | 0.0141 (6) | −0.0062 (7) |
N1 | 0.0369 (10) | 0.0355 (9) | 0.0299 (8) | −0.0082 (7) | 0.0094 (7) | −0.0015 (7) |
N2 | 0.0344 (9) | 0.0379 (9) | 0.0311 (8) | −0.0100 (8) | 0.0139 (7) | −0.0040 (8) |
C1 | 0.0326 (11) | 0.0290 (10) | 0.0281 (10) | −0.0032 (8) | 0.0076 (8) | 0.0052 (8) |
C2 | 0.0331 (11) | 0.0289 (11) | 0.0278 (10) | −0.0029 (9) | 0.0071 (8) | 0.0012 (9) |
C3 | 0.0306 (11) | 0.0313 (11) | 0.0285 (10) | 0.0012 (8) | 0.0093 (8) | 0.0027 (8) |
C4 | 0.0315 (11) | 0.0336 (11) | 0.0293 (10) | −0.0036 (9) | 0.0100 (8) | 0.0014 (9) |
C11 | 0.0364 (12) | 0.0327 (11) | 0.0254 (9) | −0.0034 (9) | 0.0064 (8) | 0.0064 (9) |
C12 | 0.0373 (12) | 0.0382 (12) | 0.0336 (11) | −0.0028 (9) | 0.0088 (9) | 0.0027 (10) |
C13 | 0.0497 (14) | 0.0344 (12) | 0.0340 (11) | −0.0034 (10) | 0.0034 (10) | 0.0020 (9) |
C14 | 0.0464 (13) | 0.0354 (12) | 0.0326 (11) | −0.0070 (10) | −0.0028 (9) | 0.0077 (9) |
C15 | 0.0336 (12) | 0.0472 (13) | 0.0420 (12) | −0.0084 (10) | 0.0019 (9) | 0.0116 (11) |
C16 | 0.0395 (13) | 0.0390 (12) | 0.0341 (11) | −0.0023 (10) | 0.0087 (9) | 0.0041 (9) |
C17 | 0.0584 (16) | 0.0471 (14) | 0.0534 (14) | −0.0177 (11) | −0.0058 (11) | 0.0017 (11) |
C31 | 0.0388 (12) | 0.0403 (12) | 0.0307 (10) | −0.0067 (9) | 0.0119 (9) | −0.0046 (9) |
C32 | 0.0354 (12) | 0.0307 (11) | 0.0227 (9) | −0.0041 (8) | 0.0085 (8) | −0.0046 (8) |
C33 | 0.0390 (12) | 0.0408 (12) | 0.0328 (11) | 0.0043 (9) | 0.0056 (9) | −0.0016 (9) |
C34 | 0.0649 (16) | 0.0374 (12) | 0.0303 (11) | −0.0026 (11) | 0.0111 (10) | 0.0051 (9) |
C35 | 0.0588 (16) | 0.0452 (13) | 0.0422 (12) | −0.0158 (11) | 0.0257 (11) | −0.0073 (11) |
C36 | 0.0353 (13) | 0.0461 (13) | 0.0575 (14) | −0.0009 (10) | 0.0162 (11) | −0.0041 (12) |
C37 | 0.0368 (12) | 0.0366 (12) | 0.0349 (11) | 0.0014 (9) | 0.0087 (9) | 0.0002 (9) |
O1—C2 | 1.243 (2) | C16—H16 | 0.9500 |
N1—C1 | 1.308 (2) | C17—H17A | 0.9800 |
N1—N2 | 1.3515 (19) | C17—H17B | 0.9800 |
N2—C2 | 1.350 (2) | C17—H17C | 0.9800 |
N2—H2 | 0.8800 | C17—H17D | 0.9800 |
C1—C4 | 1.422 (2) | C17—H17E | 0.9800 |
C1—C11 | 1.478 (2) | C17—H17F | 0.9800 |
C2—C3 | 1.440 (2) | C31—C32 | 1.500 (2) |
C3—C4 | 1.341 (2) | C31—H31A | 0.9900 |
C3—C31 | 1.506 (2) | C31—H31B | 0.9900 |
C4—H4 | 0.9500 | C32—C37 | 1.376 (3) |
C11—C16 | 1.383 (3) | C32—C33 | 1.376 (2) |
C11—C12 | 1.392 (2) | C33—C34 | 1.377 (3) |
C12—C13 | 1.381 (2) | C33—H33 | 0.9500 |
C12—H12 | 0.9500 | C34—C35 | 1.369 (3) |
C13—C14 | 1.381 (3) | C34—H34 | 0.9500 |
C13—H13 | 0.9500 | C35—C36 | 1.368 (3) |
C14—C15 | 1.384 (3) | C35—H35 | 0.9500 |
C14—C17 | 1.500 (3) | C36—C37 | 1.369 (3) |
C15—C16 | 1.387 (2) | C36—H36 | 0.9500 |
C15—H15 | 0.9500 | C37—H37 | 0.9500 |
C1—N1—N2 | 116.10 (15) | C14—C17—H17D | 109.5 |
C2—N2—N1 | 127.66 (15) | H17A—C17—H17D | 141.1 |
C2—N2—H2 | 116.2 | H17B—C17—H17D | 56.3 |
N1—N2—H2 | 116.2 | H17C—C17—H17D | 56.3 |
N1—C1—C4 | 121.77 (17) | C14—C17—H17E | 109.5 |
N1—C1—C11 | 116.46 (16) | H17A—C17—H17E | 56.3 |
C4—C1—C11 | 121.76 (16) | H17B—C17—H17E | 141.1 |
O1—C2—N2 | 120.52 (16) | H17C—C17—H17E | 56.3 |
O1—C2—C3 | 124.21 (16) | H17D—C17—H17E | 109.5 |
N2—C2—C3 | 115.27 (16) | C14—C17—H17F | 109.5 |
C4—C3—C2 | 118.24 (16) | H17A—C17—H17F | 56.3 |
C4—C3—C31 | 125.03 (17) | H17B—C17—H17F | 56.3 |
C2—C3—C31 | 116.72 (16) | H17C—C17—H17F | 141.1 |
C3—C4—C1 | 120.96 (17) | H17D—C17—H17F | 109.5 |
C3—C4—H4 | 119.5 | H17E—C17—H17F | 109.5 |
C1—C4—H4 | 119.5 | C32—C31—C3 | 114.42 (15) |
C16—C11—C12 | 118.29 (17) | C32—C31—H31A | 108.7 |
C16—C11—C1 | 120.67 (17) | C3—C31—H31A | 108.7 |
C12—C11—C1 | 121.03 (17) | C32—C31—H31B | 108.7 |
C13—C12—C11 | 120.87 (18) | C3—C31—H31B | 108.7 |
C13—C12—H12 | 119.6 | H31A—C31—H31B | 107.6 |
C11—C12—H12 | 119.6 | C37—C32—C33 | 118.48 (17) |
C14—C13—C12 | 121.16 (19) | C37—C32—C31 | 121.19 (17) |
C14—C13—H13 | 119.4 | C33—C32—C31 | 120.33 (17) |
C12—C13—H13 | 119.4 | C32—C33—C34 | 120.83 (18) |
C13—C14—C15 | 117.75 (18) | C32—C33—H33 | 119.6 |
C13—C14—C17 | 121.70 (19) | C34—C33—H33 | 119.6 |
C15—C14—C17 | 120.6 (2) | C35—C34—C33 | 119.65 (19) |
C14—C15—C16 | 121.71 (19) | C35—C34—H34 | 120.2 |
C14—C15—H15 | 119.1 | C33—C34—H34 | 120.2 |
C16—C15—H15 | 119.1 | C36—C35—C34 | 120.14 (19) |
C11—C16—C15 | 120.20 (18) | C36—C35—H35 | 119.9 |
C11—C16—H16 | 119.9 | C34—C35—H35 | 119.9 |
C15—C16—H16 | 119.9 | C35—C36—C37 | 119.89 (19) |
C14—C17—H17A | 109.5 | C35—C36—H36 | 120.1 |
C14—C17—H17B | 109.5 | C37—C36—H36 | 120.1 |
H17A—C17—H17B | 109.5 | C36—C37—C32 | 121.01 (19) |
C14—C17—H17C | 109.5 | C36—C37—H37 | 119.5 |
H17A—C17—H17C | 109.5 | C32—C37—H37 | 119.5 |
H17B—C17—H17C | 109.5 | ||
C1—N1—N2—C2 | 0.8 (3) | C12—C13—C14—C15 | −0.9 (3) |
N2—N1—C1—C4 | −0.1 (2) | C12—C13—C14—C17 | 179.75 (17) |
N2—N1—C1—C11 | 178.59 (14) | C13—C14—C15—C16 | 1.0 (3) |
N1—N2—C2—O1 | 179.62 (16) | C17—C14—C15—C16 | −179.62 (17) |
N1—N2—C2—C3 | −0.9 (3) | C12—C11—C16—C15 | −0.9 (3) |
O1—C2—C3—C4 | 179.72 (16) | C1—C11—C16—C15 | 179.14 (16) |
N2—C2—C3—C4 | 0.3 (2) | C14—C15—C16—C11 | −0.1 (3) |
O1—C2—C3—C31 | 0.8 (3) | C4—C3—C31—C32 | −14.1 (3) |
N2—C2—C3—C31 | −178.64 (15) | C2—C3—C31—C32 | 164.73 (16) |
C2—C3—C4—C1 | 0.3 (3) | C3—C31—C32—C37 | 90.5 (2) |
C31—C3—C4—C1 | 179.16 (17) | C3—C31—C32—C33 | −89.3 (2) |
N1—C1—C4—C3 | −0.5 (3) | C37—C32—C33—C34 | 0.6 (3) |
C11—C1—C4—C3 | −179.06 (16) | C31—C32—C33—C34 | −179.63 (17) |
N1—C1—C11—C16 | 153.12 (17) | C32—C33—C34—C35 | 0.3 (3) |
C4—C1—C11—C16 | −28.2 (3) | C33—C34—C35—C36 | −0.7 (3) |
N1—C1—C11—C12 | −26.8 (2) | C34—C35—C36—C37 | 0.2 (3) |
C4—C1—C11—C12 | 151.86 (17) | C35—C36—C37—C32 | 0.7 (3) |
C16—C11—C12—C13 | 1.0 (2) | C33—C32—C37—C36 | −1.1 (3) |
C1—C11—C12—C13 | −179.02 (16) | C31—C32—C37—C36 | 179.14 (17) |
C11—C12—C13—C14 | −0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 1.89 | 2.7686 (19) | 178 |
C34—H34···O1ii | 0.95 | 2.57 | 3.512 (2) | 169 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H16N2O |
Mr | 276.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 180 |
a, b, c (Å) | 7.2487 (4), 10.4469 (5), 19.1869 (9) |
β (°) | 99.598 (5) |
V (Å3) | 1432.62 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.48 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.965, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10925, 2914, 1622 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.121, 0.94 |
No. of reflections | 2914 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.20 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 1.89 | 2.7686 (19) | 178.3 |
C34—H34···O1ii | 0.95 | 2.57 | 3.512 (2) | 169 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, y+1/2, −z+1/2. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Google Scholar
Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155. Web of Science CrossRef PubMed CAS Google Scholar
Coelho, A., Sotelo, E., Fraiz, N., Yanez, M., Laguna, R., Cano, E. & Ravina, E. (2004). Bioorg. Med. Chem. Lett. 14, 321–324. Web of Science CrossRef PubMed CAS Google Scholar
Daran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, o329–o331. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg. 104, 55–62. CrossRef CAS Google Scholar
Filler, R. & Piasek, E. J. (1973). Org. Synth. 5, 80–81. Google Scholar
Frolov, E. B., Lakner, F. J., Khvat, A. V. & Ivachtchenko, A. V. (2004). Tetrahedron Lett. 45, 4693–4696. Web of Science CrossRef CAS Google Scholar
Malinka, W., Redzicka, A. & Lozach, O. (2004). Il Farmaco, 59, 457–462. CrossRef PubMed CAS Google Scholar
Ogretir, C., Yarligan, S. & Demirayak, S. (2002). J. Chem. Eng. Data, 47, 1396–1400. Web of Science CrossRef Google Scholar
Okcelik, B., Unlu, S., Banoglu, E., Kupeli, E., Yesilada, E. & Sahin, M. F. (2003). Arch. Pharm. Med. Chem. 336, 406–412. Web of Science CrossRef Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Piaz, V. D., Ciciani, G. & Giovannoni, M. P. (1994). Synthesis, pp. 669–671. CrossRef Google Scholar
Roussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem. 24, 471–476. Web of Science CrossRef CAS Google Scholar
Roussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689–2698. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sayed, G. H., Sayed, M. A., Mahmoud, M. R. & Shaaban, S. S. (2002). Egypt. J. Chem. 45, 767–776. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sotelo, E., Coelho, A. & Ravina, E. (2003). Chem. Pharm. Bull. 51, 427–430. CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Youssef, A. S., Marzouk, M. I., Madkour, H. M. F., El-Soll, A. M. A. & El-Hashash, M. A. (2005). Can. J. Chem. 83, 251–259. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years a number of 6-arylpyridazin-3(2H)-ones have been reported to possess antimicrobial (Sayed et al., 2002), anti-inflammatory (Frolov et al., 2004), herbicidal (Piaz et al.,1994), antiplatelet activities (Coelho et al., 2004), anticancer effects (Malinka et al., 2004), antifeedant (Cao et al., 2003), antihypertensive (Ogretir et al.,2002), potent analgesic (Okcelik et al., 2003) and other anticipated biological(Youssef et al., 2005) and pharmacological properties (Sotelo et al., 2003).
In previous papers treating the reactivity of lactones bearing an exocyclic carbon-carbon double bond with 1,3-dipoles (Fihi et al., 1995; Roussel et al., 2000, 2003; Daran et al., 2006), we reported that cycloaddition reactions lead to spiroheterocyclic compounds or evolutive products. In this paper, we describe the synthesis of a new dihydro-2 H– pyridazin-3-onederivative. The condensation ofα-benzylidene-γ-tolylbutenolide(1) and hydrazine (2) in reflux in toluene leads in one step to pyridazin-3-one(3). (Scheme).
Since the 1H and 13CNMR studies did not provide unambiguous information, a single-crystal of (3) was subjected to X-ray diffraction analysis to determine the structure of the product.
The molecule is not planar, the tolyl and the pyridazin rings are twisted to each other making a dihedral angle of 27.35 (9)° and the phenyl ring is nearly perpendicular to the pyridazin ring with a dihedral angle of 85.24 (5)° (Fig. 1).
The molecules are connected two by two through N—H···O hydrogen bonds with a R22(8) graph set motif (Bernstein et al., 1995) then building a pseudo dimer arranged around the inversion center (Fig. 1, Table 1). Weak C—H···O hydrogen bonds and weak offset π-π stacking stabilize the packing. The π-π stacking occurs between the pyridazin rings of symmetry related molecules with centroid-to-centroid distance of 3.748 Å and interplanar distance of 3.605Å and a slippage of 1.024 Å.