organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Benzyl-2-phenyl-6,8-di­hydro-5H-1,2,4-triazolo[3,4-c][1,4]oxazin-2-ium hexa­fluoridophosphate

aKey Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bThe Centre of Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: suxiaoyu@scu.edu.cn

(Received 4 May 2009; accepted 13 May 2009; online 20 May 2009)

The title compound, C18H18N3O+·PF6, is a chiral bicyclic 1,2,4-triazolium salt which contains four rings, viz. a triazolium, a morpholine and two phenyl rings. Analysis of bond lengths shows that the N—CH—N group in the triazolium ring conforms to a typical three-center/four-electron bond (also known as the Pimentel–Rundle three-center model). The structure is completed by a disordered PF6 counter-ion [occupancies of F atoms 0.678 (8):0.322 (8)], which inter­acts with the main mol­ecule through weak inter­molecular P—F⋯π inter­actions.

Related literature

For details of different C—C bond-formation reactions, see: Fisher et al. (2006[Fisher, C., Smith, S. W., Powell, D. A. & Fu, G. C. (2006). J. Am. Chem. Soc. 128, 1472-1473.]); Kerr et al. (2002[Kerr, M. S., Alaniz, J. & Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298-10299.]); Knight & Leeper (1998[Knight, R. L. & Leeper, F. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1891-1893.]); Readde Alaniz & Rovis (2005[Readde Alaniz, J. & Rovis, T. (2005). J. Am. Chem. Soc. 127, 6284-6289.]); Ma et al. (2008[Ma, Y., Wei, S., Wu, J., Yang, F., Liu, B., Lan, J., Yang, S. & You, J. (2008). Adv. Synth. Catal. 350, 2645-2651.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N3O+·PF6

  • Mr = 437.32

  • Monoclinic, P 21

  • a = 11.4054 (13) Å

  • b = 8.1243 (9) Å

  • c = 11.8593 (14) Å

  • β = 118.678 (2)°

  • V = 964.09 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 297 K

  • 0.53 × 0.42 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.89, Tmax = 0.93

  • 5505 measured reflections

  • 3406 independent reflections

  • 2984 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.11

  • 3406 reflections

  • 318 parameters

  • 31 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1368 Friedel pairs

  • Flack parameter: 0.01 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
P1—F1⋯Cg1i 1.57 (1) 3.03 4.235 (11) 132
P1—F2⋯Cg1 1.57 (1) 3.19 4.102 (11) 115
P1—F2′⋯Cg1 1.50 (1) 2.93 4.102 (11) 133
Symmetry code: (i) x, y+1, z. Cg1 is the centroid of the N1/N2/C8/N3/C7 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triazolium salts which can be used as the precursors of carbenes are widely used in asymmetric catalysis for the C—C bond formation reactions, such as benzoin reactions (Knight & Leeper 1998; Ma et al. 2008), Stetter reactions (Kerr et al. 2002; Readde Alaniz & Rovis 2005) and Diels-Alder reactions (Fisher et al. 2006) because of their excellent catalytic performance in umpolung aldehyde chemistry. Most of the research performed shows that chiral bicyclic 1,2,4-triazole carbenes have excellent enanselectivity because they have many bulkier groups and show weaker nucleophility than thiazolium, imidazolium and imidazolinium salts. The crystal structure of the title compound shows that N1—C7—N3 is a typical 3-center-4-electron bond (well known as the Pimentel-Rundle three-center model), because both N1—C7 (1.312 (3) Å) and N3—C7 (1.325 (2) Å) bond lengths are longer than the N2=C8 (1.292 (3) Å) double bond but shorter than other N—C single bonds (1.365 (3)–1.486 (3) Å). The dihedral angle between the phenyl (C1—C6) and triazolium ring (N1/N2/C8/N3/C7) is 27.8 °. In the crystal packing, weak P—F···π (Cg 1) interactions interconnect adjacent molecules at the same time that it provides to the stability of the crystal structure.

Related literature top

For related literature on different C—C bond-formation reactions, see: Fisher et al. (2006); Kerr et al. (2002); Knight & Leeper (1998); Readde Alaniz & Rovis (2005); Ma et al. (2008). Cg1 is N1/N2/C8/N3/C7 ring centroid.

Experimental top

The title compound was prepared according to literature methods (Knight & Leeper 1998). A solution of 3-benzyl-5-ethoxy-3,6-dihydro-2H-1,4-oxazine (prepared from (s)-2-amino-3-phenylpropan-1-ol) as a colorless liquid was added dropwise to phenylhydrazine hydrochloride (1.44 g, 10 mmol) in methanol (3 ml). The mixture was then stirred for 30 min, followed by addition of triethyl orthoformate (7.4 g, 50 mmol). After being heated at 353 K for 10 h, the reaction mixture was cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel with elution with methanol and followed with anion exchange with ammonium hexafluorophosphate to afford the pure triazolium salt (I) as a white solid in 63% overall yield. Colourless crystals suitable for X-ray structural analysis were grown by slow evaporation of actone solution. 1H NMR (400 MHz, DMSO): δ 3.17 (1 H, dd, J = 10.4 Hz, 4.8 Hz, 1H), 3.19 (dd, J = 10.0 Hz, 4.8 Hz, 1H), 3.95–4.01 (m, 2H), 4.87–4.93 (m, 1H), 5.22 (2 d, J = 16 Hz, 16 Hz, 2H), 7.47–7.68 (m, 8H), 7.69–7.91 (m, 2H), 11.20 (s, 1H).

Refinement top

All H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93, 0.97 or 0.98 Å, Uiso(H) = 1.2Ueq(C or N)

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
5-Benzyl-2-phenyl-6,8-dihydro-5H-1,2,4- triazolo[3,4-c][1,4]oxazin-2-ium hexafluoridophosphate top
Crystal data top
C18H18N3O+·F6PF(000) = 448
Mr = 437.32Dx = 1.506 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3172 reflections
a = 11.4054 (13) Åθ = 3.1–26.0°
b = 8.1243 (9) ŵ = 0.21 mm1
c = 11.8593 (14) ÅT = 297 K
β = 118.678 (2)°Parallelepiped, colourless
V = 964.09 (19) Å30.53 × 0.42 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3406 independent reflections
Radiation source: fine-focus sealed tube2984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.89, Tmax = 0.93k = 910
5505 measured reflectionsl = 1214
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.009
S = 1.11Δρmax = 0.20 e Å3
3406 reflectionsΔρmin = 0.20 e Å3
318 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
31 restraintsExtinction coefficient: 0.019 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1368 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (10)
Crystal data top
C18H18N3O+·F6PV = 964.09 (19) Å3
Mr = 437.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.4054 (13) ŵ = 0.21 mm1
b = 8.1243 (9) ÅT = 297 K
c = 11.8593 (14) Å0.53 × 0.42 × 0.32 mm
β = 118.678 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3406 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2984 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.93Rint = 0.022
5505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.20 e Å3
S = 1.11Δρmin = 0.20 e Å3
3406 reflectionsAbsolute structure: Flack (1983), 1368 Friedel pairs
318 parametersAbsolute structure parameter: 0.01 (10)
31 restraints
Special details top

Experimental. Even if the Flack parameter coming out of refinement appears quite trustable, the fact that the heaviest atomic species in the structure is P could suggest that the absolute structure determination could be thought as dubious. However, because the stereogenic carbon does not directly participate in the cyclocondensation, there is little risk for the racemization of the stereogenic carbon in this reaction. (Knight, R. L. & Leeper, F. J. (1998) J. Chem. Soc., Perkin Trans. 1, 1891–1893.) From starting material (S)-2-amino-3-phenylpropan-1-ol, it give (S)-5-benzyl-2-phenyl-6,8-dihydro-5H- [1,2,4]triazolo[3,4-c][1,4]oxazin-2-ium hexafluorophosphate as product, whose absolute configuration (s) is consistent with the absolute structure characterized by X-ray structure analysis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.79225 (6)0.03833 (8)0.45453 (6)0.0488 (2)
O10.67186 (18)0.5581 (3)0.70365 (16)0.0669 (5)
N10.69585 (16)0.5547 (3)0.34299 (15)0.0428 (4)
N20.59091 (18)0.5715 (3)0.36766 (18)0.0514 (5)
N30.77918 (16)0.5257 (3)0.54549 (15)0.0422 (4)
C10.5666 (3)0.6481 (4)0.1230 (3)0.0637 (7)
H1A0.51310.70930.14690.076*
C20.5404 (3)0.6440 (5)0.0031 (3)0.0788 (9)
H2B0.46750.70130.06540.095*
C30.6212 (3)0.5557 (5)0.0376 (3)0.0707 (8)
H3A0.60230.55290.12310.085*
C40.7283 (3)0.4729 (5)0.0528 (3)0.0734 (9)
H4A0.78410.41620.02930.088*
C50.7556 (3)0.4719 (4)0.1800 (3)0.0636 (7)
H5A0.82790.41320.24180.076*
C60.6733 (2)0.5598 (3)0.2126 (2)0.0464 (5)
C70.8076 (2)0.5279 (4)0.44951 (19)0.0435 (5)
H7A0.89170.51320.45640.052*
C80.6451 (2)0.5535 (4)0.4908 (2)0.0486 (5)
C90.5763 (3)0.5573 (6)0.5721 (2)0.0713 (9)
H9A0.52090.65500.55190.086*
H9B0.51900.46160.55330.086*
C100.7696 (3)0.4335 (4)0.7317 (2)0.0579 (7)
H10A0.72610.33130.69080.069*
H10B0.81870.41520.82370.069*
C110.8654 (2)0.4849 (3)0.6834 (2)0.0447 (5)
H11A0.92290.39140.69040.054*
C120.9534 (3)0.6333 (3)0.7548 (2)0.0531 (6)
H12A1.00500.66670.71330.064*
H12B0.89710.72500.75100.064*
C131.0474 (2)0.5901 (3)0.8942 (2)0.0514 (6)
C141.1674 (3)0.5140 (4)0.9300 (3)0.0677 (8)
H14A1.19370.49040.86860.081*
C151.2500 (3)0.4720 (5)1.0580 (4)0.0796 (9)
H15A1.33210.42251.08190.095*
C161.2119 (3)0.5024 (4)1.1490 (3)0.0794 (10)
H16A1.26740.47261.23410.095*
C171.0925 (3)0.5766 (4)1.1146 (3)0.0710 (8)
H17A1.06620.59731.17640.085*
C181.0103 (3)0.6211 (4)0.9885 (3)0.0590 (7)
H18A0.92920.67260.96600.071*
F10.7113 (5)0.1769 (5)0.4784 (7)0.105 (2)0.678 (8)
F20.7470 (6)0.0824 (7)0.5298 (6)0.115 (2)0.678 (8)
F30.8763 (5)0.0945 (6)0.4304 (8)0.118 (3)0.678 (8)
F40.8458 (8)0.1611 (7)0.3921 (7)0.126 (3)0.678 (8)
F50.9187 (4)0.0816 (12)0.5876 (4)0.132 (3)0.678 (8)
F60.6692 (5)0.0133 (10)0.3319 (4)0.128 (2)0.678 (8)
F1'0.767 (2)0.125 (3)0.5475 (17)0.214 (11)0.322 (8)
F2'0.6898 (13)0.0908 (11)0.433 (2)0.142 (7)0.322 (8)
F3'0.811 (3)0.036 (4)0.350 (2)0.280 (14)0.322 (8)
F4'0.8949 (12)0.1741 (13)0.476 (2)0.154 (9)0.322 (8)
F5'0.9061 (10)0.069 (2)0.542 (2)0.174 (9)0.322 (8)
F6'0.6823 (13)0.138 (2)0.3481 (18)0.192 (8)0.322 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0462 (3)0.0449 (3)0.0583 (4)0.0032 (3)0.0276 (3)0.0032 (3)
O10.0668 (10)0.0884 (15)0.0578 (10)0.0000 (12)0.0398 (9)0.0050 (11)
N10.0398 (8)0.0493 (11)0.0410 (9)0.0007 (10)0.0207 (7)0.0010 (9)
N20.0407 (9)0.0657 (16)0.0500 (11)0.0068 (10)0.0234 (8)0.0035 (10)
N30.0418 (8)0.0444 (11)0.0410 (9)0.0000 (10)0.0203 (7)0.0004 (9)
C10.0640 (16)0.0757 (19)0.0531 (15)0.0131 (15)0.0296 (14)0.0078 (13)
C20.0738 (19)0.104 (3)0.0513 (16)0.015 (2)0.0243 (15)0.0201 (17)
C30.0831 (18)0.085 (2)0.0498 (14)0.002 (2)0.0368 (14)0.0091 (16)
C40.092 (2)0.083 (2)0.0690 (18)0.0091 (18)0.0574 (18)0.0011 (16)
C50.0673 (16)0.0746 (18)0.0560 (15)0.0157 (15)0.0353 (13)0.0103 (13)
C60.0459 (10)0.0514 (15)0.0429 (11)0.0081 (12)0.0220 (9)0.0001 (11)
C70.0395 (10)0.0474 (13)0.0451 (11)0.0023 (11)0.0216 (9)0.0006 (10)
C80.0448 (11)0.0535 (14)0.0520 (12)0.0022 (12)0.0269 (10)0.0003 (12)
C90.0583 (13)0.110 (3)0.0584 (15)0.012 (2)0.0380 (13)0.0084 (19)
C100.0607 (15)0.0610 (17)0.0487 (14)0.0096 (13)0.0237 (12)0.0041 (12)
C110.0463 (12)0.0444 (13)0.0402 (11)0.0020 (9)0.0182 (10)0.0008 (9)
C120.0546 (14)0.0538 (15)0.0494 (13)0.0061 (12)0.0237 (12)0.0018 (11)
C130.0511 (13)0.0465 (14)0.0512 (13)0.0076 (10)0.0201 (11)0.0039 (10)
C140.0515 (13)0.071 (2)0.0762 (18)0.0059 (14)0.0270 (13)0.0082 (15)
C150.0495 (15)0.072 (2)0.091 (2)0.0005 (15)0.0126 (15)0.0044 (17)
C160.079 (2)0.064 (2)0.0590 (17)0.0103 (16)0.0041 (16)0.0011 (14)
C170.092 (2)0.064 (2)0.0467 (14)0.0145 (16)0.0250 (14)0.0090 (13)
C180.0632 (15)0.0567 (16)0.0523 (14)0.0026 (13)0.0240 (13)0.0087 (12)
F10.084 (3)0.054 (2)0.219 (7)0.0148 (17)0.107 (4)0.037 (3)
F20.125 (4)0.104 (4)0.137 (4)0.005 (3)0.081 (3)0.047 (3)
F30.079 (3)0.072 (3)0.216 (7)0.009 (2)0.083 (4)0.037 (4)
F40.190 (7)0.091 (4)0.167 (5)0.017 (4)0.143 (5)0.023 (4)
F50.076 (2)0.214 (8)0.081 (2)0.029 (4)0.0164 (18)0.037 (3)
F60.098 (3)0.163 (6)0.073 (2)0.015 (3)0.002 (2)0.033 (3)
F1'0.30 (2)0.26 (2)0.156 (13)0.078 (17)0.172 (16)0.120 (13)
F2'0.100 (8)0.052 (5)0.33 (2)0.035 (5)0.145 (12)0.062 (10)
F3'0.34 (3)0.40 (4)0.237 (19)0.08 (2)0.24 (2)0.16 (2)
F4'0.072 (6)0.075 (6)0.34 (3)0.024 (5)0.120 (12)0.059 (12)
F5'0.085 (6)0.148 (13)0.218 (16)0.027 (8)0.015 (9)0.130 (13)
F6'0.119 (9)0.163 (14)0.181 (14)0.025 (10)0.017 (9)0.086 (12)
Geometric parameters (Å, º) top
P1—F1'1.446 (10)C4—C51.386 (4)
P1—F2'1.498 (7)C4—H4A0.9300
P1—F5'1.495 (7)C5—C61.375 (4)
P1—F3'1.480 (10)C5—H5A0.9300
P1—F6'1.516 (8)C7—H7A0.9300
P1—F61.517 (4)C8—C91.508 (3)
P1—F41.533 (4)C9—H9A0.9700
P1—F4'1.539 (9)C9—H9B0.9700
P1—F11.565 (3)C10—C111.515 (3)
P1—F31.559 (4)C10—H10A0.9700
P1—F21.570 (4)C10—H10B0.9700
P1—F51.584 (4)C11—C121.537 (3)
O1—C91.410 (3)C11—H11A0.9800
O1—C101.422 (4)C12—C131.518 (3)
N1—C71.312 (3)C12—H12A0.9700
N1—N21.369 (2)C12—H12B0.9700
N1—C61.442 (3)C13—C141.371 (4)
N2—C81.292 (3)C13—C181.395 (4)
N3—C71.325 (2)C14—C151.391 (4)
N3—C81.364 (3)C14—H14A0.9300
N3—C111.486 (3)C15—C161.365 (5)
C1—C61.373 (4)C15—H15A0.9300
C1—C21.377 (4)C16—C171.361 (5)
C1—H1A0.9300C16—H16A0.9300
C2—C31.376 (5)C17—C181.379 (4)
C2—H2B0.9300C17—H17A0.9300
C3—C41.356 (5)C18—H18A0.9300
C3—H3A0.9300
F1'—P1—F2'92.7 (10)C4—C5—H5A120.8
F1'—P1—F5'100.2 (14)C1—C6—C5121.7 (2)
F2'—P1—F5'93.2 (9)C1—C6—N1118.7 (2)
F1'—P1—F3'174.1 (17)C5—C6—N1119.5 (2)
F2'—P1—F3'89.3 (11)N1—C7—N3107.70 (17)
F5'—P1—F3'85.2 (12)N1—C7—H7A126.2
F1'—P1—F6'89.4 (11)N3—C7—H7A126.2
F2'—P1—F6'88.0 (9)N2—C8—N3112.03 (18)
F5'—P1—F6'170.3 (13)N2—C8—C9127.4 (2)
F3'—P1—F6'85.1 (15)N3—C8—C9120.6 (2)
F1'—P1—F4'86.6 (10)O1—C9—C8110.13 (19)
F2'—P1—F4'178.6 (6)O1—C9—H9A109.6
F5'—P1—F4'88.1 (7)C8—C9—H9A109.6
F3'—P1—F4'91.3 (11)O1—C9—H9B109.6
F6'—P1—F4'90.9 (9)C8—C9—H9B109.6
F6—P1—F191.0 (3)H9A—C9—H9B108.1
F4—P1—F191.5 (3)O1—C10—C11110.0 (2)
F6—P1—F191.0 (3)O1—C10—H10A109.7
F4—P1—F191.5 (3)C11—C10—H10A109.7
F6—P1—F390.0 (3)O1—C10—H10B109.7
F4—P1—F386.5 (4)C11—C10—H10B109.7
F1—P1—F3177.8 (3)H10A—C10—H10B108.2
F6—P1—F288.1 (3)N3—C11—C10105.10 (19)
F4—P1—F2175.1 (4)N3—C11—C12110.14 (19)
F1—P1—F287.9 (3)C10—C11—C12114.0 (2)
F3—P1—F294.1 (4)N3—C11—H11A109.2
F6—P1—F5175.9 (5)C10—C11—H11A109.2
F4—P1—F587.3 (3)C12—C11—H11A109.2
F1—P1—F589.7 (3)C13—C12—C11110.6 (2)
F3—P1—F589.5 (3)C13—C12—H12A109.5
F2—P1—F587.8 (4)C11—C12—H12A109.5
C9—O1—C10111.0 (2)C13—C12—H12B109.5
C7—N1—N2110.85 (16)C11—C12—H12B109.5
C7—N1—C6128.92 (17)H12A—C12—H12B108.1
N2—N1—C6120.16 (17)C14—C13—C18118.4 (3)
C8—N2—N1103.74 (17)C14—C13—C12121.3 (2)
C7—N3—C8105.68 (17)C18—C13—C12120.3 (2)
C7—N3—C11130.00 (18)C13—C14—C15120.0 (3)
C8—N3—C11124.03 (17)C13—C14—H14A120.0
C6—C1—C2118.5 (3)C15—C14—H14A120.0
C6—C1—H1A120.7C16—C15—C14120.9 (3)
C2—C1—H1A120.7C16—C15—H15A119.6
C3—C2—C1120.6 (3)C14—C15—H15A119.6
C3—C2—H2B119.7C17—C16—C15119.7 (3)
C1—C2—H2B119.7C17—C16—H16A120.1
C4—C3—C2120.1 (2)C15—C16—H16A120.1
C4—C3—H3A120.0C16—C17—C18120.2 (3)
C2—C3—H3A120.0C16—C17—H17A119.9
C3—C4—C5120.7 (3)C18—C17—H17A119.9
C3—C4—H4A119.7C17—C18—C13120.8 (3)
C5—C4—H4A119.7C17—C18—H18A119.6
C6—C5—C4118.4 (3)C13—C18—H18A119.6
C6—C5—H5A120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1—F1···Cg1i1.57 (1)3.034.235 (11)132
P1—F2···Cg11.57 (1)3.194.102 (11)115
P1—F2···Cg11.50 (1)2.934.102 (11)133
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18N3O+·F6P
Mr437.32
Crystal system, space groupMonoclinic, P21
Temperature (K)297
a, b, c (Å)11.4054 (13), 8.1243 (9), 11.8593 (14)
β (°) 118.678 (2)
V3)964.09 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.53 × 0.42 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.89, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
5505, 3406, 2984
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.11
No. of reflections3406
No. of parameters318
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20
Absolute structureFlack (1983), 1368 Friedel pairs
Absolute structure parameter0.01 (10)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1—F1···Cg1i1.5664 (15)3.034.235 (11)132
P1—F2···Cg11.5695 (15)3.194.102 (11)115
P1—F2'···Cg11.4979 (15)2.934.102 (11)133
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (grant No. 20702035) for financial support.

References

First citationFisher, C., Smith, S. W., Powell, D. A. & Fu, G. C. (2006). J. Am. Chem. Soc. 128, 1472–1473.  Web of Science PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKerr, M. S., Alaniz, J. & Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298–10299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnight, R. L. & Leeper, F. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1891–1893.  Web of Science CrossRef Google Scholar
First citationMa, Y., Wei, S., Wu, J., Yang, F., Liu, B., Lan, J., Yang, S. & You, J. (2008). Adv. Synth. Catal. 350, 2645–2651.  Web of Science CSD CrossRef CAS Google Scholar
First citationReadde Alaniz, J. & Rovis, T. (2005). J. Am. Chem. Soc. 127, 6284–6289.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds