organic compounds
(7R,8S,8aS)-8-Hydroxy-7-phenylperhydroindolizin-3-one
aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-81237 Bratislava, Slovak Republic, bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-81237 Bratislava, Slovak Republic, and cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-81237 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk
In the title compound, C14H17NO2, the six-membered ring of the indolizine system adopts a chair conformation. In the crystal, molecules form chains parallel to the b axis via intermolecular O—H⋯O hydrogen bonds. The absolute molecular configuration was assigned from the synthesis.
Related literature
For industrial uses of indolizines, see: Jaung & Jung (2003); Rotaru et al. (2005); Delattre et al. (2005); Kelin et al. (2001). For biological uses, see: Nash et al. (1988); Molyneux & James (1982); Harrell (1970); Ruprecht et al. (1989); Liu et al. (2007); Smith et al. (2007); Gupta et al. (2003); Rosseels et al. (1982); Oslund et al. (2008); Ostby et al. (2000). For synthesis of indolizines, see: Chuprakov & Gevorgyan (2007); Yan & Liu (2007). For the synthesis methods used, see: Šafář et al. (2009). For structures related to the title compound, see: Švorc et al. (2009). For comparison of molecular parameters, see: Camus et al. (2003); Lokaj et al. (1999); Brown & Corbridge (1954); Pedersen (1967). For a general analysis of puckering, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809018455/bg2260sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018455/bg2260Isup2.hkl
The title compound (7R,8S,8aS)-8-hydroxy-7-phenylhexahydroindolizin-3(5H)-one was prepared according literature procedures of Šafář et al. (2009).
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and O—H distance 0.85 Å and Uiso set at 1.2Ueq of the parent atom. The
could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis; Friedel pairs have been merged.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).C14H17NO2 | F(000) = 496 |
Mr = 231.29 | Dx = 1.307 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 13180 reflections |
a = 11.4164 (3) Å | θ = 3.3–29.4° |
b = 6.6372 (2) Å | µ = 0.09 mm−1 |
c = 15.5118 (4) Å | T = 298 K |
V = 1175.38 (6) Å3 | Block, white |
Z = 4 | 0.60 × 0.56 × 0.13 mm |
Oxford Diffraction Gemini R CCD diffractometer | 1632 independent reflections |
Radiation source: fine-focus sealed tube | 1128 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 10.4340 pixels mm-1 | θmax = 29.4°, θmin = 3.6° |
Rotation method data acquisition using ω and ϕ scans | h = −15→15 |
Absorption correction: analytical (Clark & Reid, 1995) | k = −9→9 |
Tmin = 0.901, Tmax = 0.989 | l = −20→21 |
26298 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0334P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1632 reflections | Δρmax = 0.17 e Å−3 |
157 parameters | Δρmin = −0.12 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.014 (4) |
C14H17NO2 | V = 1175.38 (6) Å3 |
Mr = 231.29 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 11.4164 (3) Å | µ = 0.09 mm−1 |
b = 6.6372 (2) Å | T = 298 K |
c = 15.5118 (4) Å | 0.60 × 0.56 × 0.13 mm |
Oxford Diffraction Gemini R CCD diffractometer | 1632 independent reflections |
Absorption correction: analytical (Clark & Reid, 1995) | 1128 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 0.989 | Rint = 0.023 |
26298 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 1 restraint |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.17 e Å−3 |
1632 reflections | Δρmin = −0.12 e Å−3 |
157 parameters |
Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.2640 (2) | −0.3204 (3) | 0.32882 (13) | 0.0425 (5) | |
C3 | 0.21718 (19) | −0.1773 (3) | 0.26133 (17) | 0.0490 (5) | |
H3A | 0.1398 | −0.1296 | 0.2773 | 0.059* | |
H3B | 0.2121 | −0.2438 | 0.2058 | 0.059* | |
C4 | 0.3027 (2) | −0.0043 (4) | 0.25750 (16) | 0.0590 (6) | |
H4A | 0.2626 | 0.1227 | 0.2670 | 0.071* | |
H4B | 0.3409 | 0.0003 | 0.2017 | 0.071* | |
C5 | 0.3932 (2) | −0.0428 (3) | 0.32948 (15) | 0.0466 (5) | |
H5 | 0.4708 | −0.0578 | 0.3033 | 0.056* | |
C6 | 0.40010 (17) | 0.1156 (3) | 0.40092 (13) | 0.0400 (4) | |
H6 | 0.4340 | 0.2393 | 0.3771 | 0.048* | |
C7 | 0.47970 (18) | 0.0382 (3) | 0.47386 (13) | 0.0421 (5) | |
H7 | 0.5558 | 0.0075 | 0.4478 | 0.051* | |
C8 | 0.4309 (2) | −0.1608 (3) | 0.50890 (16) | 0.0514 (6) | |
H8A | 0.4814 | −0.2100 | 0.5545 | 0.062* | |
H8B | 0.3537 | −0.1378 | 0.5332 | 0.062* | |
C9 | 0.4226 (2) | −0.3184 (3) | 0.43821 (15) | 0.0557 (6) | |
H9A | 0.5006 | −0.3569 | 0.4197 | 0.067* | |
H9B | 0.3832 | −0.4375 | 0.4600 | 0.067* | |
C10 | 0.50152 (16) | 0.1935 (3) | 0.54318 (14) | 0.0407 (5) | |
C11 | 0.42606 (19) | 0.2235 (4) | 0.61193 (16) | 0.0507 (5) | |
H11 | 0.3582 | 0.1464 | 0.6159 | 0.061* | |
C12 | 0.4494 (2) | 0.3654 (4) | 0.67466 (16) | 0.0580 (6) | |
H12 | 0.3976 | 0.3833 | 0.7203 | 0.070* | |
C13 | 0.5498 (2) | 0.4808 (4) | 0.66972 (17) | 0.0599 (7) | |
H13 | 0.5662 | 0.5754 | 0.7122 | 0.072* | |
C14 | 0.6248 (2) | 0.4553 (4) | 0.60216 (17) | 0.0623 (7) | |
H14 | 0.6919 | 0.5343 | 0.5982 | 0.075* | |
C15 | 0.60156 (19) | 0.3120 (4) | 0.53928 (16) | 0.0501 (5) | |
H15 | 0.6538 | 0.2951 | 0.4938 | 0.060* | |
N1 | 0.35736 (17) | −0.2359 (3) | 0.36550 (12) | 0.0473 (4) | |
O1 | 0.22237 (14) | −0.4869 (2) | 0.34724 (11) | 0.0545 (5) | |
O2 | 0.28771 (12) | 0.1598 (2) | 0.43433 (11) | 0.0496 (4) | |
H2 | 0.2647 | 0.2673 | 0.4146 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0503 (12) | 0.0381 (10) | 0.0391 (11) | 0.0064 (9) | 0.0004 (9) | −0.0066 (9) |
C3 | 0.0507 (13) | 0.0483 (11) | 0.0480 (12) | 0.0040 (9) | −0.0032 (10) | 0.0014 (10) |
C4 | 0.0858 (18) | 0.0477 (12) | 0.0436 (12) | −0.0088 (11) | −0.0148 (13) | 0.0042 (10) |
C5 | 0.0585 (13) | 0.0404 (10) | 0.0408 (10) | −0.0013 (9) | −0.0015 (10) | 0.0023 (9) |
C6 | 0.0488 (11) | 0.0331 (10) | 0.0382 (10) | −0.0015 (8) | 0.0012 (9) | 0.0038 (8) |
C7 | 0.0395 (10) | 0.0449 (12) | 0.0419 (11) | 0.0035 (8) | −0.0023 (9) | −0.0003 (9) |
C8 | 0.0681 (15) | 0.0384 (11) | 0.0478 (11) | 0.0032 (10) | −0.0163 (11) | 0.0054 (9) |
C9 | 0.0736 (15) | 0.0366 (11) | 0.0570 (14) | 0.0078 (9) | −0.0211 (12) | 0.0039 (10) |
C10 | 0.0405 (10) | 0.0417 (11) | 0.0397 (10) | 0.0017 (8) | −0.0059 (9) | 0.0024 (8) |
C11 | 0.0523 (11) | 0.0496 (12) | 0.0501 (12) | 0.0022 (9) | 0.0080 (11) | −0.0004 (10) |
C12 | 0.0783 (16) | 0.0509 (12) | 0.0447 (12) | 0.0132 (12) | 0.0045 (12) | −0.0045 (11) |
C13 | 0.0818 (17) | 0.0480 (12) | 0.0500 (13) | 0.0058 (11) | −0.0209 (13) | −0.0055 (11) |
C14 | 0.0621 (14) | 0.0556 (14) | 0.0693 (16) | −0.0098 (11) | −0.0195 (14) | 0.0004 (12) |
C15 | 0.0453 (11) | 0.0587 (13) | 0.0464 (12) | −0.0024 (10) | −0.0031 (10) | 0.0035 (10) |
N1 | 0.0593 (11) | 0.0359 (9) | 0.0465 (9) | 0.0005 (8) | −0.0100 (8) | 0.0014 (8) |
O1 | 0.0640 (11) | 0.0413 (8) | 0.0582 (11) | −0.0047 (6) | −0.0065 (8) | 0.0027 (7) |
O2 | 0.0456 (8) | 0.0486 (8) | 0.0546 (9) | 0.0083 (6) | 0.0023 (7) | 0.0085 (7) |
C2—O1 | 1.237 (2) | C8—C9 | 1.518 (3) |
C2—N1 | 1.332 (3) | C8—H8A | 0.9700 |
C2—C3 | 1.511 (3) | C8—H8B | 0.9700 |
C3—C4 | 1.508 (3) | C9—N1 | 1.458 (3) |
C3—H3A | 0.9700 | C9—H9A | 0.9700 |
C3—H3B | 0.9700 | C9—H9B | 0.9700 |
C4—C5 | 1.542 (3) | C10—C11 | 1.385 (3) |
C4—H4A | 0.9700 | C10—C15 | 1.388 (3) |
C4—H4B | 0.9700 | C11—C12 | 1.380 (3) |
C5—N1 | 1.457 (3) | C11—H11 | 0.9300 |
C5—C6 | 1.530 (3) | C12—C13 | 1.380 (4) |
C5—H5 | 0.9800 | C12—H12 | 0.9300 |
C6—O2 | 1.414 (2) | C13—C14 | 1.364 (4) |
C6—C7 | 1.540 (3) | C13—H13 | 0.9300 |
C6—H6 | 0.9800 | C14—C15 | 1.388 (3) |
C7—C10 | 1.510 (3) | C14—H14 | 0.9300 |
C7—C8 | 1.533 (3) | C15—H15 | 0.9300 |
C7—H7 | 0.9800 | O2—H2 | 0.8200 |
O1—C2—N1 | 125.78 (19) | C9—C8—H8A | 109.4 |
O1—C2—C3 | 125.9 (2) | C7—C8—H8A | 109.4 |
N1—C2—C3 | 108.33 (17) | C9—C8—H8B | 109.4 |
C2—C3—C4 | 106.09 (18) | C7—C8—H8B | 109.4 |
C2—C3—H3A | 110.5 | H8A—C8—H8B | 108.0 |
C4—C3—H3A | 110.5 | N1—C9—C8 | 109.40 (16) |
C2—C3—H3B | 110.5 | N1—C9—H9A | 109.8 |
C4—C3—H3B | 110.5 | C8—C9—H9A | 109.8 |
H3A—C3—H3B | 108.7 | N1—C9—H9B | 109.8 |
C3—C4—C5 | 106.18 (18) | C8—C9—H9B | 109.8 |
C3—C4—H4A | 110.5 | H9A—C9—H9B | 108.2 |
C5—C4—H4A | 110.5 | C11—C10—C15 | 117.7 (2) |
C3—C4—H4B | 110.5 | C11—C10—C7 | 122.92 (19) |
C5—C4—H4B | 110.5 | C15—C10—C7 | 119.4 (2) |
H4A—C4—H4B | 108.7 | C10—C11—C12 | 121.4 (2) |
N1—C5—C6 | 109.98 (17) | C10—C11—H11 | 119.3 |
N1—C5—C4 | 103.63 (18) | C12—C11—H11 | 119.3 |
C6—C5—C4 | 116.45 (19) | C13—C12—C11 | 120.0 (2) |
N1—C5—H5 | 108.8 | C13—C12—H12 | 120.0 |
C6—C5—H5 | 108.8 | C11—C12—H12 | 120.0 |
C4—C5—H5 | 108.8 | C14—C13—C12 | 119.7 (2) |
O2—C6—C5 | 111.15 (17) | C14—C13—H13 | 120.2 |
O2—C6—C7 | 109.59 (16) | C12—C13—H13 | 120.2 |
C5—C6—C7 | 109.49 (16) | C13—C14—C15 | 120.3 (2) |
O2—C6—H6 | 108.9 | C13—C14—H14 | 119.9 |
C5—C6—H6 | 108.9 | C15—C14—H14 | 119.9 |
C7—C6—H6 | 108.9 | C10—C15—C14 | 121.0 (2) |
C10—C7—C6 | 113.12 (15) | C10—C15—H15 | 119.5 |
C10—C7—C8 | 113.31 (18) | C14—C15—H15 | 119.5 |
C6—C7—C8 | 109.48 (17) | C2—N1—C5 | 115.52 (17) |
C10—C7—H7 | 106.8 | C2—N1—C9 | 125.54 (18) |
C6—C7—H7 | 106.8 | C5—N1—C9 | 118.92 (18) |
C8—C7—H7 | 106.8 | C6—O2—H2 | 109.5 |
C9—C8—C7 | 111.1 (2) | ||
O1—C2—C3—C4 | −175.3 (2) | C8—C7—C10—C15 | 139.5 (2) |
N1—C2—C3—C4 | 5.1 (2) | C15—C10—C11—C12 | −0.3 (3) |
C2—C3—C4—C5 | −4.7 (2) | C7—C10—C11—C12 | 179.3 (2) |
C3—C4—C5—N1 | 2.8 (2) | C10—C11—C12—C13 | −0.1 (4) |
C3—C4—C5—C6 | −118.0 (2) | C11—C12—C13—C14 | 0.7 (4) |
N1—C5—C6—O2 | −67.5 (2) | C12—C13—C14—C15 | −1.0 (4) |
C4—C5—C6—O2 | 50.0 (2) | C11—C10—C15—C14 | 0.0 (3) |
N1—C5—C6—C7 | 53.7 (2) | C7—C10—C15—C14 | −179.6 (2) |
C4—C5—C6—C7 | 171.18 (18) | C13—C14—C15—C10 | 0.6 (3) |
O2—C6—C7—C10 | −63.7 (2) | O1—C2—N1—C5 | 176.9 (2) |
C5—C6—C7—C10 | 174.18 (17) | C3—C2—N1—C5 | −3.5 (2) |
O2—C6—C7—C8 | 63.7 (2) | O1—C2—N1—C9 | −4.6 (3) |
C5—C6—C7—C8 | −58.4 (2) | C3—C2—N1—C9 | 175.0 (2) |
C10—C7—C8—C9 | −174.06 (18) | C6—C5—N1—C2 | 125.53 (19) |
C6—C7—C8—C9 | 58.6 (2) | C4—C5—N1—C2 | 0.4 (2) |
C7—C8—C9—N1 | −52.9 (3) | C6—C5—N1—C9 | −53.1 (3) |
C6—C7—C10—C11 | 85.3 (2) | C4—C5—N1—C9 | −178.2 (2) |
C8—C7—C10—C11 | −40.0 (3) | C8—C9—N1—C2 | −126.4 (2) |
C6—C7—C10—C15 | −95.1 (2) | C8—C9—N1—C5 | 52.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 2.00 | 2.807 (2) | 170 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C14H17NO2 |
Mr | 231.29 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 298 |
a, b, c (Å) | 11.4164 (3), 6.6372 (2), 15.5118 (4) |
V (Å3) | 1175.38 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.60 × 0.56 × 0.13 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD diffractometer |
Absorption correction | Analytical (Clark & Reid, 1995) |
Tmin, Tmax | 0.901, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26298, 1632, 1128 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.101, 1.03 |
No. of reflections | 1632 |
No. of parameters | 157 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.12 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 2.00 | 2.807 (2) | 169.9 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0161/08 and 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer, and the Development Agency under contract No. APVV-0210-07.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711–715. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Camus, F., Norberg, B., Bourry, A., Akué-Gédu, R., Rigo, B. & Durant, F. (2003). Acta Cryst. E59, o1002–o1003. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chuprakov, S. & Gevorgyan, V. (2007). Org. Lett. 9, 4463–4466. Web of Science CrossRef PubMed CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1362. CrossRef CAS Web of Science Google Scholar
Delattre, F., Woisel, P., Surpateanu, G., Cazier, F. & Blach, P. (2005). Tetrahedron, 61, 3939–3945. Web of Science CrossRef CAS Google Scholar
Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873. Web of Science CrossRef PubMed CAS Google Scholar
Harrell, W. B. (1970). J. Pharm. Sci. 59, 275–277. CrossRef CAS PubMed Web of Science Google Scholar
Jaung, J. Y. & Jung, Y. S. (2003). Bull. Korean Chem. Soc. 24, 1565–1566. CAS Google Scholar
Kelin, A. V., Sromek, A. W. & Gevorgyan, V. (2001). J. Am. Chem. Soc. 123, 2074–2075. Web of Science PubMed CAS Google Scholar
Liu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409–412. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lokaj, J., Kettmann, V. & Marchalin, S. (1999). Acta Cryst. C55, 1103–1105. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Molyneux, R. J. & James, L. F. (1982). Science, 216, 190–191. CrossRef CAS PubMed Web of Science Google Scholar
Nash, R. J., Fellows, L. E., Dring, J. V., Stirton, C. H., Carter, D., Hegarty, M. P. & Bell, E. A. (1988). Phytochemistry, 27, 1403–1406. CrossRef CAS Web of Science Google Scholar
Oslund, R. C., Cermak, N. & Gelb, M. H. (2008). J. Med. Chem. 51, 4708–4714. Web of Science CrossRef PubMed CAS Google Scholar
Ostby, O. B., Dalhus, B., Gundersen, L. L., Rise, F., Bast, A. & Haenen, G. R. M. M. (2000). Eur. J. Org. Chem. 9, 3763–3770. CrossRef Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424. CrossRef CAS Web of Science Google Scholar
Rosseels, G., Peiren, M., Inion, H., Deray, E., Prost, M., Descamps, M., Bauthier, J., Richard, J., Tornay, C., Colot, M. & Claviere, M. (1982). Eur. J. Med. Chem. 17, 581–584. CAS Google Scholar
Rotaru, A. V., Druta, I. D., Oeser, T. & Müller, T. J. (2005). Helv. Chim. Acta, 88, 1798–1812. Web of Science CSD CrossRef Google Scholar
Ruprecht, R. M., Mullaney, S., Anderson, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157. CAS PubMed Web of Science Google Scholar
Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009). Tetrahedron Asymmetry, 20, 626–634. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, C. R., Bunnelle, E. M., Rhodes, A. J. & Sarpong, R. (2007). Org. Lett. 9, 1169–1171. Web of Science CrossRef PubMed CAS Google Scholar
Švorc, Ľ., Vrábel, V., Žúžiová, J., Bobošíková, M. & Kožíšek, J. (2009). Acta Cryst. E65, o895–o896. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, B. & Liu, Y. (2007). Org. Lett. 9, 4323–4326. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocycles are involved in a wide range of biologically important chemical reactions in living organisms, and therefore they form one of the most important and well investigated classes of organic compounds. One group of heterocycles, indolizines, has received much scientific attention during the recent years. They are known for their use as synthetic dyes (Jaung & Jung, 2003), fluorescent materials (Rotaru et al., 2005; Delattre et al., 2005) and also as key intermediates for the synthesis of indolizine based molecules (Kelin et al., 2001). Indolizines both synthetic and natural have also been ascribed with a number of useful biological activities such as antibacterial, antiviral, antiinflammatory (Nash et al., 1988; Molyneux & James, 1982), testosterone-3&-reductase inhibitors, 5-HT4 receptor antagonists, CNS depressants (Harrell et al., 1970), anti-HIV (Ruprecht et al., 1989), anti-cancer (Liu et al., 2007; Smith et al., 2007) and have been used for treating cardiovascular ailments (Gupta et al., 2003). For instance, aminoalkyloxybenzenesulfonylindolizine compounds such as fantofarone and butoprozine have been used for the treatment of hypertension, arrhythmia and angina pectoris (Rosseels et al., 1982). Several oxygenated indolizines have been shown to prevent, due to their strong anti-oxidative effects, the initiation of oxidation processes that lead to DNA damage (Oslund et al., 2008; Ostby et al., 2000). Consequently, synthesis of indolizines have attracted considerable attention and a number of synthetic methodologies have been developed for a variety of indolizines, making use of in particular, transition metal catalyzed reactions (Chuprakov & Gevorgyan, 2007; Yan & Liu, 2007). In addition, indolizines and their derivatives are important in the field of material science owing to their unique photophysical properties.
Based on these facts and in continutation of our interest in developing simple and efficient routes for the synthesis of novel indolizine derivatives, we report here the synthesis and molecular and crystal structure of the title compound, (I) (Fig. 1). A similar analysis of its enantiomer (the stereochemistry of atom C6 was confirmed as R) has already been published (Švorc et al., 2009). The absolute configuration of (I) was established by the synthesis and is depicted in the scheme and Fig. 1. The expected stereochemistry of atoms C5, C6 and C7 was confirmed as S, S and R, respectively (Fig. 1). The central six-membered N-heterocyclic ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C5, C6, C8 and C9 are coplanar to within 0.010 (2) Å, while atoms N1 and C7 are displaced from this plane on opposite sides, with out-of-plane displacements of -0.555 (2) and 0.711 (2) Å, respectively. The phenyl ring attached to the indolizine ring system is planar (mean deviation is 0.009 (2) Å). The N1—C5 and N1—C9 bonds are approximately equivalent (See supplementary material) and both are much longer than the N1—C2 bond. Moreover, the N1 atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [359.9 (2)°]. These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl and agree with literature values for simple amides (Brown & Corbridge, 1954; Pedersen, 1967). The bond length of the carbonyl group C2═O1 is 1.236 (2) Å, respectively, is somewhat longer than typical carbonyl bonds. This may be due to the fact that atom O1 participates as acceptor in intermolecular hydrogen bonds with atom O2 as a donor. These intermolecular O—H···O hydrogen bonds link the molecules of (I) into extended chains, which run parallel to the b axis (Fig. 2) and help to stabilize the crystal structure of the compound. Bond lengths and angles in the indolizine ring system are in good agreement with values from the literature (Camus et al., 2003; Lokaj et al., 1999).