metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ-oxalato)(μ-2-oxidopyridinium-3-carboxyl­ato)lanthanum(III)]

aAcademic Affairs Division, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China, and bSchool of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
*Correspondence e-mail: zzb24@yahoo.com.cn

(Received 3 March 2009; accepted 14 May 2009; online 23 May 2009)

In the title complex, [La(C6H4NO3)(C2O4)(H2O)2]n, the LaIII ion is coordinated by eight O atoms from two 2-oxido­pyridinium-3-carboxyl­ate ligands, two oxalate ligands and two water mol­ecules in a distorted bicapped square-anti­prismatic geometry. The carboxyl­ate groups link adjacent LaIII ions, forming two-dimensional layers that are further linked by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Huang et al. (2009[Huang, C.-D., Huang, J.-X., Wu, Y.-Y., Lian, Y.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m177-m178.]); Xu et al. (2009[Xu, Y.-J., Yang, X.-X. & Zhao, H.-B. (2009). Acta Cryst. E65, m310.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C6H4NO3)(C2O4)(H2O)2]

  • Mr = 401.06

  • Triclinic, [P \overline 1]

  • a = 8.0856 (18) Å

  • b = 8.5493 (19) Å

  • c = 9.388 (3) Å

  • α = 109.281 (3)°

  • β = 104.702 (3)°

  • γ = 104.940 (2)°

  • V = 549.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.93 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.460, Tmax = 0.512

  • 2843 measured reflections

  • 1946 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.10

  • 1946 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 1.96 2.789 (5) 162
O1W—H1W⋯O6i 0.85 2.01 2.805 (5) 155
O2W—H4W⋯O2Wii 0.85 2.00 2.853 (7) 180
O2W—H3W⋯O7iii 0.85 1.97 2.753 (5) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Whereas a large number of metal derivatives of oxalic acid have been reported, there are few examples of metal derivatives of 2-oxynicotinic acid and oxalic acid: the crystal structures of praseodymium (Xu et al., 2009) and dysprosium (Huang et al., 2009) derivatives have been reported only. We report here a lanthanum(III) complex formed by reaction of lanthanum nitrate, 2-oxynicotinic acid and oxalic acid under hydrothermal conditions.

As illustrated in Fig. 1, each LaIII centre adopts a distorted bicapped square-antiprismatic geometry, defined by eight O atoms from two 2-oxynicotinate ligands, two oxalate ligands, and two water molecules. The 2-oxynicotinate ligands and oxalate ligands link the LaIII ions to form layers in the bc plane in which the shortest La···La separation is 4.429 (3) Å. These layers are connected through O—H···O and N—H···O hydrogen bonding (Table 1) involving 2-oxynicotinate ligands, oxalate ligands and the coordinating water molecules, forming a three-dimensional supramolecular network motif (Fig. 2).

Related literature top

For related structures, see: Huang et al. (2009); Xu et al. (2009).

Experimental top

A mixture of La2O3 (0.245 g, 0.75 mmol), 2-oxynicotinic acid (0.127 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), water (10 ml) and HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 4 days, then cooled to room temperature at 5 K h-1 to yield colourless block crystals.

Refinement top

H atoms bound to C and N atoms were placed at calculated positions and refined as riding with N—H = 0.86 Å, C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C/N). H atoms of the water molecules were tentatively located in difference Fourier maps and refined with distance restraints of O—H = 0.850 (1) Å and H···H = 1.350 (1) Å. In the final cycles of refinement, the O—H distances were normalized to 0.85 Å and the H atoms were refined as riding with Uiso(H) = 1.5 Ueq(O). Atom H4W forms a symmetrical H-bond about a centre of inversion and therefore is included with site occupancy factor 0.5. The alternative position H4W' points towards the centroid of an adjacent pyridyl ring.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing displacement ellipsoids at 30% probability for non-H atoms. Symmetry codes: (i) -x, -y, -z; (ii) -x, 1 - y, 1 - z; (iii) -x, -y, 1 - z. The H atoms on O2W are disordered.
[Figure 2] Fig. 2. Packing diagram showing part of the 2-D layers (horizontal).
Poly[diaqua(µ-oxalato)(µ-2-oxidopyridinium-3-carboxylato)lanthanum(III)] top
Crystal data top
[La(C6H4NO3)(C2O4)(H2O)2]Z = 2
Mr = 401.06F(000) = 384
Triclinic, P1Dx = 2.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0856 (18) ÅCell parameters from 2827 reflections
b = 8.5493 (19) Åθ = 2.5–28.3°
c = 9.388 (3) ŵ = 3.93 mm1
α = 109.281 (3)°T = 293 K
β = 104.702 (3)°Block, colourless
γ = 104.940 (2)°0.20 × 0.18 × 0.17 mm
V = 549.5 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1946 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 79
Tmin = 0.460, Tmax = 0.512k = 1010
2843 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.4664P]
where P = (Fo2 + 2Fc2)/3
1946 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.37 e Å3
Crystal data top
[La(C6H4NO3)(C2O4)(H2O)2]γ = 104.940 (2)°
Mr = 401.06V = 549.5 (2) Å3
Triclinic, P1Z = 2
a = 8.0856 (18) ÅMo Kα radiation
b = 8.5493 (19) ŵ = 3.93 mm1
c = 9.388 (3) ÅT = 293 K
α = 109.281 (3)°0.20 × 0.18 × 0.17 mm
β = 104.702 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1870 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.512Rint = 0.020
2843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.10Δρmax = 0.92 e Å3
1946 reflectionsΔρmin = 1.37 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5156 (6)0.3528 (6)0.7873 (5)0.0193 (9)
C20.4448 (6)0.2225 (6)0.8439 (5)0.0190 (9)
C30.5510 (7)0.2276 (6)0.9869 (5)0.0278 (10)
H3A0.50430.14111.02090.033*
C40.7265 (7)0.3590 (7)1.0820 (6)0.0340 (12)
H4A0.79630.36171.17880.041*
C50.7924 (6)0.4829 (7)1.0291 (6)0.0310 (11)
H5A0.90850.57281.09100.037*
C60.2549 (6)0.0837 (6)0.7555 (5)0.0195 (9)
C70.0124 (6)0.0944 (6)0.0035 (5)0.0209 (9)
C80.0714 (6)0.5526 (5)0.4754 (5)0.0180 (8)
La10.14649 (3)0.16626 (3)0.39929 (2)0.01432 (11)
N10.6911 (5)0.4769 (5)0.8873 (5)0.0253 (8)
H1A0.73930.55610.85700.030*
O10.1395 (4)0.0964 (4)0.6424 (3)0.0215 (7)
O20.2093 (4)0.0404 (4)0.7976 (4)0.0285 (7)
O30.4372 (4)0.3643 (4)0.6604 (4)0.0276 (7)
O40.1045 (5)0.2240 (4)0.1390 (4)0.0258 (7)
O50.0601 (5)0.1020 (4)0.1273 (4)0.0275 (7)
O60.1897 (4)0.4906 (4)0.4461 (4)0.0238 (7)
O70.0581 (4)0.6932 (4)0.4686 (4)0.0263 (7)
O1W0.4501 (5)0.2684 (5)0.3496 (4)0.0400 (9)
H1W0.55120.32700.43090.060*
H2W0.47210.19110.28080.060*
O2W0.3055 (5)0.0633 (5)0.4169 (4)0.0329 (8)
H3W0.26040.14910.43960.049*
H4W0.42140.02540.46670.049*0.50
H4W'0.28710.12020.31750.049*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (2)0.016 (2)0.018 (2)0.0023 (17)0.0060 (17)0.0040 (17)
C20.017 (2)0.017 (2)0.0160 (19)0.0019 (17)0.0018 (17)0.0062 (17)
C30.027 (2)0.023 (2)0.024 (2)0.002 (2)0.000 (2)0.012 (2)
C40.024 (3)0.034 (3)0.024 (2)0.001 (2)0.011 (2)0.012 (2)
C50.017 (2)0.029 (3)0.029 (2)0.001 (2)0.0042 (19)0.006 (2)
C60.016 (2)0.020 (2)0.016 (2)0.0004 (17)0.0025 (17)0.0074 (17)
C70.021 (2)0.024 (2)0.017 (2)0.0035 (18)0.0066 (18)0.0103 (18)
C80.014 (2)0.014 (2)0.017 (2)0.0005 (17)0.0001 (16)0.0029 (17)
La10.01183 (15)0.01383 (16)0.01434 (15)0.00163 (11)0.00223 (11)0.00694 (11)
N10.0186 (19)0.022 (2)0.027 (2)0.0013 (16)0.0045 (16)0.0110 (17)
O10.0154 (15)0.0253 (17)0.0172 (15)0.0003 (13)0.0005 (12)0.0118 (13)
O20.0215 (17)0.0269 (18)0.0325 (18)0.0002 (14)0.0028 (14)0.0192 (15)
O30.0211 (17)0.0312 (18)0.0235 (16)0.0002 (14)0.0014 (14)0.0163 (14)
O40.0326 (19)0.0190 (16)0.0157 (15)0.0002 (14)0.0040 (14)0.0068 (13)
O50.0369 (19)0.0238 (16)0.0163 (15)0.0085 (15)0.0030 (14)0.0093 (13)
O60.0193 (16)0.0192 (16)0.0336 (17)0.0070 (13)0.0107 (14)0.0116 (14)
O70.0294 (18)0.0209 (16)0.0373 (18)0.0110 (14)0.0169 (15)0.0177 (14)
O1W0.0197 (18)0.057 (2)0.0307 (19)0.0001 (17)0.0090 (15)0.0158 (18)
O2W0.0285 (18)0.040 (2)0.043 (2)0.0178 (16)0.0155 (16)0.0276 (17)
Geometric parameters (Å, º) top
C1—O31.248 (5)La1—O62.574 (3)
C1—N11.382 (6)La1—O5i2.582 (3)
C1—C21.437 (6)La1—O32.585 (3)
C2—C31.377 (6)La1—O1W2.598 (3)
C2—C61.489 (6)La1—O42.606 (3)
C3—C41.395 (7)La1—O7ii2.608 (3)
C3—H3A0.930La1—O1iii2.612 (3)
C4—C51.357 (7)La1—O2W2.634 (3)
C4—H4A0.930La1—O2iii2.691 (3)
C5—N11.351 (6)N1—H1A0.860
C5—H5A0.930O1—La1iii2.612 (3)
C6—O21.252 (5)O2—La1iii2.691 (3)
C6—O11.279 (5)O5—La1i2.582 (3)
C7—O41.250 (5)O7—La1ii2.608 (3)
C7—O51.251 (5)O1W—H1W0.850
C7—C7i1.550 (9)O1W—H2W0.850
C8—O61.253 (5)O2W—H3W0.850
C8—O71.255 (5)O2W—H4W0.850
C8—C8ii1.537 (8)O2W—H4W'0.850
La1—O12.553 (3)
O3—C1—N1118.0 (4)O1—La1—O1iii61.92 (11)
O3—C1—C2127.4 (4)O6—La1—O1iii130.59 (10)
N1—C1—C2114.6 (4)O5i—La1—O1iii70.65 (10)
C3—C2—C1120.0 (4)O3—La1—O1iii127.57 (9)
C3—C2—C6118.0 (4)O1W—La1—O1iii148.31 (12)
C1—C2—C6121.9 (4)O4—La1—O1iii111.41 (10)
C2—C3—C4121.8 (4)O7ii—La1—O1iii72.58 (10)
C2—C3—H3A119.1O1—La1—O2W68.95 (10)
C4—C3—H3A119.1O6—La1—O2W147.03 (10)
C5—C4—C3118.1 (4)O5i—La1—O2W64.56 (10)
C5—C4—H4A121.0O3—La1—O2W78.73 (11)
C3—C4—H4A121.0O1W—La1—O2W72.87 (12)
N1—C5—C4120.6 (4)O4—La1—O2W115.38 (10)
N1—C5—H5A119.7O7ii—La1—O2W138.08 (10)
C4—C5—H5A119.7O1iii—La1—O2W81.33 (10)
O2—C6—O1121.1 (4)O1—La1—O2iii105.06 (9)
O2—C6—C2119.0 (4)O6—La1—O2iii92.61 (10)
O1—C6—C2119.8 (4)O5i—La1—O2iii66.21 (10)
O4—C7—O5126.4 (4)O3—La1—O2iii157.15 (11)
O4—C7—C7i116.9 (4)O1W—La1—O2iii131.48 (11)
O5—C7—C7i116.7 (5)O4—La1—O2iii67.14 (10)
O6—C8—O7126.1 (4)O7ii—La1—O2iii65.52 (10)
O6—C8—C8ii117.3 (4)O1iii—La1—O2iii49.08 (9)
O7—C8—C8ii116.6 (4)O2W—La1—O2iii118.71 (11)
O1—La1—O6115.01 (10)C5—N1—C1124.9 (4)
O1—La1—O5i116.73 (10)C5—N1—H1A117.6
O6—La1—O5i127.50 (10)C1—N1—H1A117.6
O1—La1—O365.68 (10)C6—O1—La1135.9 (3)
O6—La1—O374.38 (10)C6—O1—La1iii96.3 (3)
O5i—La1—O3136.55 (11)La1—O1—La1iii118.08 (11)
O1—La1—O1W121.99 (10)C6—O2—La1iii93.3 (2)
O6—La1—O1W78.71 (11)C1—O3—La1136.4 (3)
O5i—La1—O1W81.66 (11)C7—O4—La1118.5 (3)
O3—La1—O1W65.28 (11)C7—O5—La1i119.4 (3)
O1—La1—O4172.10 (10)C8—O6—La1120.7 (3)
O6—La1—O465.38 (10)C8—O7—La1ii119.8 (3)
O5i—La1—O462.14 (10)La1—O1W—H1W118.9
O3—La1—O4120.98 (10)La1—O1W—H2W118.3
O1W—La1—O465.90 (11)H1W—O1W—H2W105.2
O1—La1—O7ii69.92 (10)La1—O2W—H3W122.1
O6—La1—O7ii62.13 (9)La1—O2W—H4W119.6
O5i—La1—O7ii131.12 (11)H3W—O2W—H4W105.2
O3—La1—O7ii91.67 (11)La1—O2W—H4W'101.0
O1W—La1—O7ii139.07 (11)H3W—O2W—H4W'100.6
O4—La1—O7ii104.60 (10)H4W—O2W—H4W'105.2
O3—C1—C2—C3179.2 (4)N1—C1—O3—La1168.2 (3)
N1—C1—C2—C30.4 (6)C2—C1—O3—La111.5 (7)
O3—C1—C2—C63.1 (7)O1—La1—O3—C122.7 (4)
N1—C1—C2—C6177.2 (4)O6—La1—O3—C1150.2 (4)
C1—C2—C3—C41.3 (7)O5i—La1—O3—C181.2 (4)
C6—C2—C3—C4176.5 (4)O1W—La1—O3—C1125.3 (4)
C2—C3—C4—C50.6 (8)O4—La1—O3—C1162.1 (4)
C3—C4—C5—N10.8 (8)O7ii—La1—O3—C189.7 (4)
C3—C2—C6—O211.8 (6)O1iii—La1—O3—C120.6 (5)
C1—C2—C6—O2170.5 (4)O2W—La1—O3—C149.1 (4)
C3—C2—C6—O1165.6 (4)O2iii—La1—O3—C192.9 (5)
C1—C2—C6—O112.0 (6)O5—C7—O4—La1160.6 (4)
C4—C5—N1—C11.7 (7)C7i—C7—O4—La120.2 (6)
O3—C1—N1—C5179.3 (4)O6—La1—O4—C7157.7 (3)
C2—C1—N1—C51.0 (6)O5i—La1—O4—C720.9 (3)
O2—C6—O1—La1137.1 (4)O3—La1—O4—C7150.7 (3)
C2—C6—O1—La145.4 (6)O1W—La1—O4—C7114.1 (3)
O2—C6—O1—La1iii5.4 (4)O7ii—La1—O4—C7108.3 (3)
C2—C6—O1—La1iii172.0 (3)O1iii—La1—O4—C731.6 (4)
O6—La1—O1—C698.9 (4)O2W—La1—O4—C758.8 (3)
O5i—La1—O1—C690.3 (4)O2iii—La1—O4—C753.3 (3)
O3—La1—O1—C641.3 (4)O4—C7—O5—La1i159.7 (4)
O1W—La1—O1—C66.8 (4)C7i—C7—O5—La1i19.6 (6)
O7ii—La1—O1—C6142.8 (4)O7—C8—O6—La1165.0 (3)
O1iii—La1—O1—C6136.7 (5)C8ii—C8—O6—La115.1 (6)
O2W—La1—O1—C645.5 (4)O1—La1—O6—C863.1 (3)
O2iii—La1—O1—C6160.9 (4)O5i—La1—O6—C8106.6 (3)
O6—La1—O1—La1iii124.39 (13)O3—La1—O6—C8116.0 (3)
O5i—La1—O1—La1iii46.43 (16)O1W—La1—O6—C8176.7 (3)
O3—La1—O1—La1iii178.07 (17)O4—La1—O6—C8108.2 (3)
O1W—La1—O1—La1iii143.50 (14)O7ii—La1—O6—C815.6 (3)
O7ii—La1—O1—La1iii80.43 (14)O1iii—La1—O6—C810.4 (4)
O1iii—La1—O1—La1iii0.0O2W—La1—O6—C8152.6 (3)
O2W—La1—O1—La1iii91.27 (15)O2iii—La1—O6—C844.9 (3)
O2iii—La1—O1—La1iii24.16 (15)O6—C8—O7—La1ii165.3 (3)
O1—C6—O2—La1iii5.2 (4)C8ii—C8—O7—La1ii14.7 (6)
C2—C6—O2—La1iii172.2 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4iv0.861.962.789 (5)162
O1W—H1W···O6iv0.852.012.805 (5)155
O2W—H4W···O2Wv0.852.002.853 (7)180
O2W—H3W···O7vi0.851.972.753 (5)152
Symmetry codes: (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[La(C6H4NO3)(C2O4)(H2O)2]
Mr401.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0856 (18), 8.5493 (19), 9.388 (3)
α, β, γ (°)109.281 (3), 104.702 (3), 104.940 (2)
V3)549.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.93
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.460, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
2843, 1946, 1870
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.10
No. of reflections1946
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 1.37

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.962.789 (5)162
O1W—H1W···O6i0.852.012.805 (5)155
O2W—H4W···O2Wii0.852.002.853 (7)180
O2W—H3W···O7iii0.851.972.753 (5)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge Southern Medical University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, C.-D., Huang, J.-X., Wu, Y.-Y., Lian, Y.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m177–m178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-J., Yang, X.-X. & Zhao, H.-B. (2009). Acta Cryst. E65, m310.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds