organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­chloro­phen­yl)-3-[4-(di­methyl­amino)phen­yl]prop-2-enone

aDepartment of Physics, Mangalore University, Mangalagangothri, Mangalore 574 199, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and cDepartment of Physics, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: brinda@sscu.iisc.ernet.in

(Received 16 March 2009; accepted 23 April 2009; online 14 May 2009)

In the title compound, C17H15Cl2NO, the dimethyl­amino­phenyl group is close to coplanar with the central propenone group [dihedral angle = 13.1 (1)° between the mean planes], while the dichloro­phenyl group is twisted from the plane [dihedral angle = 64.0 (1)°]. In the crystal, C—H⋯O and weak C—H⋯π inter­actions are formed between mol­ecules.

Related literature

For related structures, see: Murafuji et al. (1999[Murafuji, T., Sugihara, Y., Moriya, T., Mikata, Y. & Yan, S. (1999). New J. Chem. 23, 683-685.]); Liu et al. (2002[Liu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, o445-o446.]); Patil et al. (2007a[Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738-o1740.],b[Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o3253-o3254.]); Rosli et al. (2007[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15Cl2NO

  • Mr = 320.20

  • Monoclinic, P 21 /c

  • a = 8.5741 (19) Å

  • b = 12.706 (3) Å

  • c = 14.671 (3) Å

  • β = 102.645 (4)°

  • V = 1559.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 290 K

  • 0.25 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.972

  • 11540 measured reflections

  • 2908 independent reflections

  • 2039 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.03

  • 2908 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.55 3.252 (3) 132
C4—H4⋯Cg1ii 0.93 2.95 3.784 (3) 150
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C10–C15 ring.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For related structures, see: Murafuji et al. (1999); Liu et al. (2002); Patil et al. (2007a,b); Rosli et al. (2007). Cg1 is the centroid of the C10–C15 ring.

Experimental top

A solution of potassium hydroxide (6.25 g, 0.11 mol) in ethanol (25 ml) was added slowly to a mixture of dichloroacetophenone (18.8 g, 0.01 mol) and N-dimethyl benzaldehyde (14.9 g, 0.01 mol) in a conical flask. After stirring for two hours, the precipitate was filtered and recrystallized from ethanol to give pale orange crystals.

Refinement top

H atoms were positioned geometrically with C—H bond lengths of 0.93–0.96 Å and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram. The dotted lines indicate intermolecular C—H···O and C—H···π interactions.
1-(2,4-Dichlorophenyl)-3-[4-(dimethylamino)phenyl]prop-2-enone top
Crystal data top
C17H15Cl2NOF(000) = 664
Mr = 320.20Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3980 reflections
a = 8.5741 (19) Åθ = 2.0–26.0°
b = 12.706 (3) ŵ = 0.41 mm1
c = 14.671 (3) ÅT = 290 K
β = 102.645 (4)°Block, orange
V = 1559.5 (6) Å30.25 × 0.15 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2908 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.923, Tmax = 0.972k = 1515
11540 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.1972P]
where P = (Fo2 + 2Fc2)/3
2908 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H15Cl2NOV = 1559.5 (6) Å3
Mr = 320.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5741 (19) ŵ = 0.41 mm1
b = 12.706 (3) ÅT = 290 K
c = 14.671 (3) Å0.25 × 0.15 × 0.07 mm
β = 102.645 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2908 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2039 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.972Rint = 0.031
11540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2908 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42606 (8)0.03118 (5)0.21634 (5)0.0704 (2)
Cl20.33039 (10)0.29372 (6)0.42942 (5)0.0851 (3)
C130.2618 (2)0.71607 (15)0.03057 (14)0.0421 (5)
C100.1972 (2)0.54646 (15)0.08139 (14)0.0414 (5)
C90.1721 (2)0.45849 (17)0.13874 (15)0.0461 (5)
H90.22440.39640.12990.055*
C150.2754 (2)0.53119 (16)0.00809 (15)0.0459 (5)
H150.30780.46360.00370.055*
C80.0829 (3)0.45512 (17)0.20297 (16)0.0508 (6)
H80.02470.51510.21010.061*
N10.2898 (2)0.79802 (13)0.08543 (13)0.0518 (5)
C120.1844 (3)0.73163 (16)0.04341 (14)0.0481 (5)
H120.15480.79930.05680.058*
C60.1595 (2)0.26655 (16)0.25224 (16)0.0469 (5)
C30.3204 (3)0.08209 (17)0.23089 (17)0.0509 (6)
C140.3057 (2)0.61262 (16)0.04685 (14)0.0456 (5)
H140.35610.5990.09570.055*
C40.3608 (3)0.13662 (17)0.31339 (16)0.0519 (6)
H40.44250.11290.36160.062*
C110.1517 (2)0.64926 (17)0.09597 (15)0.0476 (5)
H110.09720.66220.14310.057*
C70.0693 (3)0.36611 (18)0.26236 (17)0.0547 (6)
O10.0115 (2)0.37083 (15)0.32101 (14)0.0849 (6)
C50.2780 (3)0.22710 (17)0.32357 (15)0.0501 (5)
C20.2015 (3)0.11710 (19)0.15886 (17)0.0576 (6)
H20.17370.0790.10360.069*
C170.2722 (3)0.90604 (18)0.05879 (18)0.0685 (7)
H17A0.16250.91930.05740.103*
H17B0.3040.95210.10330.103*
H17C0.33830.91850.00210.103*
C160.3630 (3)0.77905 (19)0.16414 (17)0.0665 (7)
H16A0.47250.75870.14170.1*
H16B0.35840.84220.20060.1*
H16C0.30640.72380.20220.1*
C10.1244 (3)0.20911 (18)0.16968 (17)0.0577 (6)
H10.0460.23390.12020.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0823 (5)0.0539 (4)0.0800 (5)0.0084 (3)0.0288 (4)0.0038 (3)
Cl20.1090 (6)0.0798 (5)0.0577 (4)0.0164 (4)0.0008 (4)0.0118 (3)
C130.0447 (12)0.0425 (12)0.0377 (11)0.0018 (9)0.0062 (9)0.0013 (9)
C100.0437 (11)0.0407 (12)0.0406 (12)0.0008 (9)0.0110 (10)0.0024 (9)
C90.0442 (12)0.0439 (12)0.0499 (13)0.0026 (9)0.0098 (10)0.0023 (10)
C150.0531 (13)0.0363 (11)0.0508 (13)0.0034 (10)0.0166 (11)0.0031 (10)
C80.0476 (12)0.0472 (13)0.0604 (15)0.0057 (10)0.0178 (11)0.0116 (11)
N10.0671 (12)0.0415 (10)0.0496 (11)0.0017 (9)0.0187 (9)0.0063 (8)
C120.0629 (14)0.0365 (11)0.0466 (13)0.0078 (10)0.0158 (11)0.0002 (9)
C60.0451 (12)0.0426 (12)0.0546 (14)0.0054 (10)0.0142 (11)0.0104 (10)
C30.0543 (14)0.0443 (13)0.0585 (15)0.0036 (10)0.0219 (12)0.0083 (11)
C140.0524 (13)0.0448 (12)0.0430 (12)0.0010 (10)0.0176 (10)0.0010 (10)
C40.0545 (13)0.0502 (13)0.0496 (14)0.0017 (11)0.0081 (11)0.0124 (11)
C110.0556 (13)0.0496 (13)0.0413 (12)0.0050 (10)0.0189 (10)0.0009 (10)
C70.0451 (12)0.0573 (14)0.0645 (15)0.0020 (11)0.0181 (12)0.0118 (12)
O10.0906 (13)0.0778 (13)0.1068 (15)0.0194 (10)0.0665 (12)0.0326 (11)
C50.0550 (13)0.0484 (13)0.0480 (13)0.0035 (11)0.0135 (11)0.0069 (10)
C20.0610 (15)0.0550 (15)0.0539 (14)0.0095 (12)0.0061 (12)0.0027 (11)
C170.0926 (19)0.0432 (14)0.0702 (17)0.0039 (13)0.0186 (15)0.0076 (12)
C160.0852 (18)0.0624 (16)0.0571 (15)0.0086 (13)0.0268 (14)0.0111 (12)
C10.0508 (13)0.0598 (15)0.0562 (15)0.0032 (12)0.0019 (11)0.0079 (12)
Geometric parameters (Å, º) top
Cl1—C31.738 (2)C6—C11.389 (3)
Cl2—C51.739 (2)C6—C71.507 (3)
C13—N11.369 (2)C3—C41.372 (3)
C13—C141.402 (3)C3—C21.372 (3)
C13—C121.405 (3)C14—H140.930
C10—C111.393 (3)C4—C51.376 (3)
C10—C151.400 (3)C4—H40.9300
C10—C91.443 (3)C11—H110.930
C9—C81.338 (3)C7—O11.218 (3)
C9—H90.930C2—C11.369 (3)
C15—C141.371 (3)C2—H20.930
C15—H150.930C17—H17A0.960
C8—C71.448 (3)C17—H17B0.960
C8—H80.930C17—H17C0.960
N1—C171.444 (3)C16—H16A0.960
N1—C161.450 (3)C16—H16B0.960
C12—C111.365 (3)C16—H16C0.960
C12—H120.930C1—H10.930
C6—C51.383 (3)
N1—C13—C14121.63 (18)C3—C4—C5118.8 (2)
N1—C13—C12121.38 (18)C3—C4—H4120.6
C14—C13—C12116.97 (18)C5—C4—H4120.6
C11—C10—C15116.45 (18)C12—C11—C10122.21 (19)
C11—C10—C9123.63 (19)C12—C11—H11118.9
C15—C10—C9119.89 (18)C10—C11—H11118.9
C8—C9—C10128.1 (2)O1—C7—C8121.3 (2)
C8—C9—H9116.0O1—C7—C6119.6 (2)
C10—C9—H9116.0C8—C7—C6119.03 (19)
C14—C15—C10122.09 (19)C4—C5—C6122.1 (2)
C14—C15—H15119.0C4—C5—Cl2117.72 (18)
C10—C15—H15119.0C6—C5—Cl2120.17 (18)
C9—C8—C7125.7 (2)C1—C2—C3118.9 (2)
C9—C8—H8117.2C1—C2—H2120.5
C7—C8—H8117.2C3—C2—H2120.5
C13—N1—C17121.42 (18)N1—C17—H17A109.5
C13—N1—C16120.27 (18)N1—C17—H17B109.5
C17—N1—C16117.56 (18)H17A—C17—H17B109.5
C11—C12—C13121.25 (19)N1—C17—H17C109.5
C11—C12—H12119.4H17A—C17—H17C109.5
C13—C12—H12119.4H17B—C17—H17C109.5
C5—C6—C1116.9 (2)N1—C16—H16A109.5
C5—C6—C7122.5 (2)N1—C16—H16B109.5
C1—C6—C7120.6 (2)H16A—C16—H16B109.5
C4—C3—C2121.1 (2)N1—C16—H16C109.5
C4—C3—Cl1119.27 (18)H16A—C16—H16C109.5
C2—C3—Cl1119.55 (19)H16B—C16—H16C109.5
C15—C14—C13120.99 (19)C2—C1—C6122.1 (2)
C15—C14—H14119.5C2—C1—H1118.9
C13—C14—H14119.5C6—C1—H1118.9
C11—C10—C9—C811.4 (4)C9—C10—C11—C12176.6 (2)
C15—C10—C9—C8170.5 (2)C9—C8—C7—O1177.9 (2)
C11—C10—C15—C140.1 (3)C9—C8—C7—C60.9 (3)
C9—C10—C15—C14178.3 (2)C5—C6—C7—O161.9 (3)
C10—C9—C8—C7176.3 (2)C1—C6—C7—O1117.2 (3)
C14—C13—N1—C17168.4 (2)C5—C6—C7—C8117.0 (2)
C12—C13—N1—C1713.1 (3)C1—C6—C7—C864.0 (3)
C14—C13—N1—C161.6 (3)C3—C4—C5—C62.3 (3)
C12—C13—N1—C16177.0 (2)C3—C4—C5—Cl2179.29 (16)
N1—C13—C12—C11177.7 (2)C1—C6—C5—C41.5 (3)
C14—C13—C12—C110.9 (3)C7—C6—C5—C4179.42 (19)
C10—C15—C14—C131.2 (3)C1—C6—C5—Cl2179.91 (16)
N1—C13—C14—C15179.3 (2)C7—C6—C5—Cl21.0 (3)
C12—C13—C14—C150.7 (3)C4—C3—C2—C11.1 (3)
C2—C3—C4—C50.9 (3)Cl1—C3—C2—C1176.93 (17)
Cl1—C3—C4—C5178.95 (16)C3—C2—C1—C61.9 (3)
C13—C12—C11—C102.1 (3)C5—C6—C1—C20.6 (3)
C15—C10—C11—C121.5 (3)C7—C6—C1—C2178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.553.252 (3)132
C4—H4···Cg1ii0.932.953.784 (3)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15Cl2NO
Mr320.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.5741 (19), 12.706 (3), 14.671 (3)
β (°) 102.645 (4)
V3)1559.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.25 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
11540, 2908, 2039
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.03
No. of reflections2908
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.553.252 (3)132
C4—H4···Cg1ii0.932.953.784 (3)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST program at IISc.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, o445–o446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurafuji, T., Sugihara, Y., Moriya, T., Mikata, Y. & Yan, S. (1999). New J. Chem. 23, 683–685.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738–o1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o3253–o3254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds