organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Adamant­yl){4-[(2-chloro-9-iso­propyl-9H-purin-6-yl)aminometh­yl]phen­yl}methanone tri­chloro­methane solvate

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín 762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 27 March 2009; accepted 4 May 2009; online 14 May 2009)

In the title compound, C26H30ClN5O·CHCl3, the purine mol­ecule consists of essentially planar benzene and purine ring systems [maximum deviation 0.010 (4) Å for both ring systems] forming a dihedral angle of 85.52 (9)°. Inter­molecular N—H⋯N hydrogen bonds link adjacent mol­ecules into centrosymmetric dimers. The structure also contains inter­molecular C—H⋯O and C—H⋯N inter­actions. The benzene rings form offset face-to-face ππ stacking inter­actions with an inter­planar distance of 3.541 (4) Å and a centroid-to-centroid distance of 4.022 (4) Å.

Related literature

The title compound was prepared according to a modified literature procedure (Fiorini & Abel, 1998[Fiorini, M. T. & Abel, Ch. (1998). Tetrahedron Lett. 39, 1827-1830.]). For the synthesis and/or biological activity of related compounds, see: Legraverend & Grierson (2006[Legraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987-4006.]); Long et al. (2007[Long, J., Manchandia, T., Ban, K., Gao, S., Miller, C. & Chandra, J. (2007). Cancer Chemother. Pharmacol. 59, 527-535.]). For related structures, see: Trávníček & Kryštof (2004[Trávníček, Z. & Kryštof, V. (2004). Acta Cryst. E60, o2324-o2327.]); Trávníček & Zatloukal (2004[Trávníček, Z. & Zatloukal, M. (2004). Acta Cryst. E60, o924-o926.]); Trávníček & Popa (2007a[Trávníček, Z. & Popa, I. (2007a). Acta Cryst. E63, o629-o631.],b[Trávníček, Z. & Popa, I. (2007b). Acta Cryst. E63, o728-o730.]) Rouchal et al. (2009[Rouchal, M., Nečas, M., Carvalho, F. P. de & Vícha, R. (2009). Acta Cryst. E65, o298-o299.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30ClN5O·CHCl3

  • Mr = 583.39

  • Orthorhombic, P b c a

  • a = 19.434 (12) Å

  • b = 13.186 (7) Å

  • c = 22.149 (11) Å

  • V = 5676 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 120 K

  • 0.45 × 0.40 × 0.20 mm

Data collection
  • Kuma KM4 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.738, Tmax = 0.917

  • 32219 measured reflections

  • 4984 independent reflections

  • 2981 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.177

  • S = 1.12

  • 4984 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N5i 0.88 2.22 3.013 (5) 150
C27—H27A⋯N2ii 1.00 2.59 3.553 (6) 161
C5—H5B⋯N3iii 1.00 2.66 3.641 (5) 166
C23—H23A⋯O1iv 0.95 2.23 3.179 (5) 175
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Purine molecules substituted at C2, C6 and N9 are known as potential ATP-competitive inhibitors of cyclin-dependent kinases (key regulators of the cell division cycle) and due to this fact, they can show an anticancer activity (Legraverend & Grierson, 2006). The adamantane scaffold is often used in order to improve the biological properties of potential or known drugs and a number of compounds with various biological activity have been described, e.g. antitumor agents published by Long et al. (2007).

The asymmetric unit of the title compound (Fig. 1) consists of a trisubstituted purine molecule with trichloromethane solvent in the ratio of one to one. Both benzene and purine rings are essentially planar with maximum deviation from the best plane being 0.010 (4) Å for C19 of the purine ring and 0.010 (4) Å for C16 of the benzene ring. The dihedral angle between purine and benzene rings is 85.52 (9)°. The torsion angles C18/N1/C19/C22, C19/N1/C18/C15, N1/C18/C15/C16 and H24A/C24/N4/C21 are 173.42 (4), -79.52 (4), -36.80 (5) and -34.28 (5)° respectively. Adjacent molecules are linked into centrosymmetric pairs by intermolecular N1—H1A···N5i hydrogen bonds (Table 2, Fig. 2; symmetry code: (i) -x, 1 - y, 1 - z). The trichloromethane molecule forms intermolecular C—H···N and C—H···Cl interactions. Additional intermolecular interactions (Table 2) include C23—H23A···O1, C5—H5B···N3, C—H···Cl contacts and offset face-to-face ππ interactions with an interplanar distance of 3.541 (4) Å and a centroid–centroid distance of 4.022 (4) Å.

Related literature top

The title compound was prepared according to a modified literature procedure (Fiorini & Abel, 1998). For the synthesis and/or biological activity of related compounds, see: Legraverend & Grierson (2006); Long et al. (2007). For related structures, see: Trávníček & Kryštof (2004); Trávníček & Zatloukal (2004); Trávníček & Popa (2007a,b) Rouchal et al. (2009).

Experimental top

The title compound was prepared according to a slightly modified literature procedure (Fiorini & Abel, 1998). 2,6-Dichloro-9-(propan-2-yl)-9H-purine (0.53 mmol, 122.5 mg) and (1-adamantyl)-[4-(aminomethyl)phenyl]methanone hydrochloride (0.56 mmol, 170 mg) were dissolved in a mixture of DMF (2 ml) and triethylamine (1.06 mmol, 0.15 ml). The resulting solution was stirred under reflux for 2 h (the reaction progress was monitored by TLC). After this period, the mixture was diluted with water and extracted five times with 15 ml of diethyl ether. The combined organic layers were washed twice with brine and dried over sodium sulfate. The desired product was obtained by evaporation of the solvent in vacuum and purified by column chromatography (silica gel; petroleum ether/ethyl acetate, v/v 1:1) to give a colourless crystalline powder (210 mg, 86%, mp 190–192°C). The crystal used for data collection was acquired by evaporation from a chloroform solution at room temperature.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Centrosymmetric dimer linked by N—H···N hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at 50% probability for non-H atoms.
(1-Adamantyl){4-[(2-chloro-9-isopropyl-9H-purin-6- yl)aminomethyl]phenyl}methanone trichloromethane solvate top
Crystal data top
C26H30ClN5O·CHCl3Dx = 1.365 Mg m3
Mr = 583.39Melting point: 191 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4984 reflections
a = 19.434 (12) Åθ = 2.6–25.0°
b = 13.186 (7) ŵ = 0.45 mm1
c = 22.149 (11) ÅT = 120 K
V = 5676 (5) Å3Block, colourless
Z = 80.45 × 0.40 × 0.20 mm
F(000) = 2432
Data collection top
Kuma KM4 CCD
diffractometer
4984 independent reflections
Radiation source: fine-focus sealed tube2981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 0.06 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 2321
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1515
Tmin = 0.738, Tmax = 0.917l = 2621
32219 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0729P)2 + 9.6676P]
where P = (Fo2 + 2Fc2)/3
4984 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C26H30ClN5O·CHCl3V = 5676 (5) Å3
Mr = 583.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.434 (12) ŵ = 0.45 mm1
b = 13.186 (7) ÅT = 120 K
c = 22.149 (11) Å0.45 × 0.40 × 0.20 mm
Data collection top
Kuma KM4 CCD
diffractometer
4984 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2981 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.917Rint = 0.044
32219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.12Δρmax = 0.71 e Å3
4984 reflectionsΔρmin = 0.54 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15090 (5)0.68048 (7)0.25476 (4)0.0305 (3)
O10.13811 (13)1.1399 (2)0.50691 (13)0.0320 (7)
N10.00385 (14)0.6307 (2)0.43338 (14)0.0230 (7)
H1A0.01350.59310.46250.028*
N20.07497 (15)0.6451 (2)0.34920 (14)0.0226 (7)
N30.15847 (14)0.5170 (2)0.32042 (13)0.0217 (7)
N40.15553 (15)0.3704 (2)0.38744 (13)0.0233 (7)
N50.07206 (15)0.4204 (2)0.45195 (14)0.0256 (7)
C10.21373 (18)1.0428 (3)0.56796 (17)0.0254 (9)
C20.2555 (2)1.1416 (3)0.56949 (19)0.0307 (9)
H2B0.22511.19820.58190.037*
H2C0.27291.15660.52840.037*
C30.3165 (2)1.1347 (3)0.61349 (18)0.0322 (10)
H3B0.34281.20000.61320.039*
C40.2899 (2)1.1132 (3)0.67731 (19)0.0355 (10)
H4A0.26001.16960.69080.043*
H4B0.32921.10800.70560.043*
C50.2487 (2)1.0128 (3)0.67746 (18)0.0322 (10)
H5B0.23150.99880.71920.039*
C60.2956 (2)0.9260 (3)0.65710 (19)0.0361 (10)
H6A0.26950.86150.65720.043*
H6B0.33460.91920.68560.043*
C70.3232 (2)0.9470 (3)0.59318 (18)0.0299 (9)
H7A0.35390.89010.58050.036*
C80.26304 (19)0.9563 (3)0.54841 (17)0.0270 (9)
H8A0.23750.89140.54690.032*
H8B0.28110.97050.50750.032*
C90.18688 (19)1.0227 (3)0.63391 (17)0.0282 (9)
H9A0.15701.07940.64690.034*
H9B0.15930.95960.63470.034*
C100.3642 (2)1.0465 (3)0.59343 (19)0.0340 (10)
H10A0.38241.06030.55250.041*
H10B0.40361.04080.62160.041*
C110.15273 (18)1.0551 (3)0.52472 (17)0.0239 (9)
C120.10965 (18)0.9675 (3)0.50235 (17)0.0243 (9)
C130.07214 (18)0.9841 (3)0.44859 (17)0.0271 (9)
H13A0.07491.04790.42880.033*
C140.03137 (19)0.9082 (3)0.42450 (18)0.0300 (9)
H14A0.00660.92090.38830.036*
C150.02571 (18)0.8139 (3)0.45191 (17)0.0241 (8)
C160.06142 (19)0.7977 (3)0.50545 (18)0.0282 (9)
H16A0.05710.73450.52560.034*
C170.10368 (19)0.8731 (3)0.53013 (18)0.0266 (9)
H17A0.12850.85980.56620.032*
C180.02097 (19)0.7331 (3)0.42573 (17)0.0248 (9)
H18A0.06680.73880.44500.030*
H18B0.02700.74650.38210.030*
C190.05284 (17)0.5906 (3)0.39739 (16)0.0206 (8)
C200.12500 (18)0.6035 (3)0.31567 (16)0.0242 (9)
C210.13385 (17)0.4650 (3)0.36843 (16)0.0213 (8)
C220.08232 (17)0.4945 (3)0.40833 (16)0.0203 (8)
C230.11642 (19)0.3486 (3)0.43759 (17)0.0251 (9)
H23A0.12090.28740.45990.030*
C240.21277 (18)0.3110 (3)0.35970 (18)0.0279 (9)
H24A0.21290.32500.31530.033*
C250.2812 (2)0.3476 (4)0.3856 (2)0.0502 (13)
H25A0.28640.42030.37790.075*
H25B0.31910.31060.36640.075*
H25C0.28210.33520.42920.075*
C260.2007 (2)0.1985 (3)0.3687 (2)0.0460 (12)
H26A0.15640.17960.35080.069*
H26B0.20010.18310.41200.069*
H26C0.23770.16020.34910.069*
C270.5087 (2)1.1979 (4)0.7415 (2)0.0520 (14)
H27A0.47511.23340.76830.062*
Cl110.49438 (8)1.06661 (13)0.74624 (7)0.0720 (5)
Cl120.49582 (6)1.23926 (13)0.66603 (5)0.0630 (4)
Cl130.59279 (6)1.22798 (13)0.76534 (6)0.0635 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0316 (5)0.0309 (6)0.0291 (5)0.0028 (4)0.0083 (4)0.0085 (4)
O10.0316 (15)0.0228 (15)0.0416 (18)0.0013 (12)0.0007 (12)0.0059 (13)
N10.0249 (16)0.0199 (17)0.0242 (17)0.0002 (13)0.0038 (13)0.0003 (14)
N20.0203 (15)0.0249 (17)0.0224 (17)0.0011 (13)0.0007 (13)0.0029 (14)
N30.0206 (15)0.0228 (17)0.0216 (17)0.0001 (13)0.0018 (13)0.0025 (14)
N40.0219 (16)0.0286 (19)0.0194 (17)0.0041 (13)0.0006 (13)0.0001 (14)
N50.0247 (16)0.0278 (19)0.0243 (18)0.0027 (14)0.0008 (14)0.0014 (15)
C10.025 (2)0.025 (2)0.026 (2)0.0004 (16)0.0031 (16)0.0034 (17)
C20.033 (2)0.026 (2)0.033 (2)0.0035 (18)0.0026 (18)0.0040 (18)
C30.032 (2)0.029 (2)0.035 (2)0.0052 (18)0.0028 (18)0.0020 (19)
C40.040 (2)0.035 (3)0.031 (2)0.0030 (19)0.0001 (19)0.0044 (19)
C50.038 (2)0.031 (2)0.027 (2)0.0051 (19)0.0010 (18)0.0044 (19)
C60.041 (2)0.032 (2)0.035 (3)0.0031 (19)0.0089 (19)0.000 (2)
C70.026 (2)0.030 (2)0.034 (2)0.0021 (17)0.0001 (17)0.0043 (18)
C80.027 (2)0.027 (2)0.027 (2)0.0045 (17)0.0045 (16)0.0048 (17)
C90.029 (2)0.027 (2)0.029 (2)0.0016 (17)0.0082 (17)0.0007 (18)
C100.025 (2)0.043 (3)0.034 (2)0.0083 (19)0.0008 (18)0.003 (2)
C110.0235 (19)0.021 (2)0.028 (2)0.0037 (16)0.0087 (16)0.0004 (17)
C120.0178 (18)0.021 (2)0.034 (2)0.0045 (15)0.0049 (16)0.0014 (18)
C130.0251 (19)0.026 (2)0.030 (2)0.0045 (17)0.0018 (17)0.0063 (18)
C140.025 (2)0.037 (3)0.029 (2)0.0029 (18)0.0020 (17)0.0032 (19)
C150.0221 (19)0.025 (2)0.025 (2)0.0013 (16)0.0078 (15)0.0009 (17)
C160.029 (2)0.029 (2)0.027 (2)0.0014 (17)0.0030 (17)0.0037 (18)
C170.029 (2)0.022 (2)0.029 (2)0.0009 (16)0.0039 (17)0.0028 (17)
C180.0267 (19)0.025 (2)0.023 (2)0.0044 (16)0.0016 (16)0.0000 (17)
C190.0153 (17)0.021 (2)0.025 (2)0.0035 (15)0.0049 (15)0.0059 (17)
C200.0238 (19)0.028 (2)0.021 (2)0.0000 (16)0.0008 (16)0.0018 (17)
C210.0197 (18)0.025 (2)0.020 (2)0.0020 (15)0.0032 (15)0.0002 (17)
C220.0219 (18)0.021 (2)0.0178 (19)0.0035 (15)0.0017 (14)0.0018 (16)
C230.030 (2)0.026 (2)0.020 (2)0.0019 (16)0.0021 (16)0.0025 (17)
C240.0207 (19)0.037 (2)0.026 (2)0.0063 (17)0.0015 (16)0.0011 (18)
C250.028 (2)0.070 (4)0.053 (3)0.012 (2)0.006 (2)0.027 (3)
C260.048 (3)0.036 (3)0.054 (3)0.011 (2)0.023 (2)0.007 (2)
C270.035 (2)0.087 (4)0.034 (3)0.009 (3)0.003 (2)0.013 (3)
Cl110.0769 (10)0.0811 (11)0.0581 (9)0.0080 (8)0.0082 (7)0.0164 (8)
Cl120.0379 (7)0.1163 (13)0.0348 (7)0.0103 (7)0.0040 (5)0.0052 (7)
Cl130.0324 (6)0.1206 (13)0.0377 (7)0.0056 (7)0.0026 (5)0.0095 (7)
Geometric parameters (Å, º) top
Cl1—C201.762 (4)C8—H8A0.990
O1—C111.219 (4)C8—H8B0.990
N1—C191.349 (5)C9—H9A0.990
N1—C181.445 (5)C9—H9B0.990
N1—H1A0.880C10—H10A0.990
N2—C201.341 (5)C10—H10B0.990
N2—C191.357 (5)C11—C121.511 (5)
N3—C201.316 (5)C12—C171.392 (5)
N3—C211.353 (5)C12—C131.413 (5)
N4—C231.376 (5)C13—C141.384 (5)
N4—C211.383 (5)C13—H13A0.950
N4—C241.493 (5)C14—C151.388 (5)
N5—C231.320 (5)C14—H14A0.950
N5—C221.388 (5)C15—C161.390 (5)
C1—C111.532 (5)C15—C181.515 (5)
C1—C21.535 (5)C16—C171.401 (5)
C1—C81.552 (5)C16—H16A0.950
C1—C91.574 (5)C17—H17A0.950
C2—C31.538 (6)C18—H18A0.990
C2—H2B0.990C18—H18B0.990
C2—H2C0.990C19—C221.411 (5)
C3—C41.531 (6)C21—C221.391 (5)
C3—C101.551 (6)C23—H23A0.950
C3—H3B1.000C24—C261.515 (6)
C4—C51.548 (6)C24—C251.526 (6)
C4—H4A0.990C24—H24A1.000
C4—H4B0.990C25—H25A0.980
C5—C61.531 (6)C25—H25B0.980
C5—C91.546 (6)C25—H25C0.980
C5—H5B1.000C26—H26A0.980
C6—C71.539 (6)C26—H26B0.980
C6—H6A0.990C26—H26C0.980
C6—H6B0.990C27—Cl111.756 (6)
C7—C101.535 (6)C27—Cl131.763 (5)
C7—C81.537 (5)C27—Cl121.775 (5)
C7—H7A1.000C27—H27A1.000
C19—N1—C18122.2 (3)H10A—C10—H10B108.2
C19—N1—H1A118.9O1—C11—C12117.8 (3)
C18—N1—H1A118.9O1—C11—C1118.7 (3)
C20—N2—C19116.7 (3)C12—C11—C1123.5 (3)
C20—N3—C21109.1 (3)C17—C12—C13117.9 (3)
C23—N4—C21105.4 (3)C17—C12—C11125.8 (3)
C23—N4—C24129.4 (3)C13—C12—C11116.3 (3)
C21—N4—C24125.1 (3)C14—C13—C12120.5 (4)
C23—N5—C22104.1 (3)C14—C13—H13A119.7
C11—C1—C2109.4 (3)C12—C13—H13A119.7
C11—C1—C8112.4 (3)C13—C14—C15121.7 (4)
C2—C1—C8107.7 (3)C13—C14—H14A119.2
C11—C1—C9110.0 (3)C15—C14—H14A119.2
C2—C1—C9107.3 (3)C14—C15—C16118.1 (4)
C8—C1—C9109.9 (3)C14—C15—C18120.7 (3)
C1—C2—C3111.8 (3)C16—C15—C18121.2 (3)
C1—C2—H2B109.3C15—C16—C17121.1 (4)
C3—C2—H2B109.3C15—C16—H16A119.4
C1—C2—H2C109.3C17—C16—H16A119.4
C3—C2—H2C109.3C12—C17—C16120.7 (4)
H2B—C2—H2C107.9C12—C17—H17A119.7
C4—C3—C2109.6 (3)C16—C17—H17A119.7
C4—C3—C10109.1 (3)N1—C18—C15114.4 (3)
C2—C3—C10108.9 (3)N1—C18—H18A108.7
C4—C3—H3B109.8C15—C18—H18A108.7
C2—C3—H3B109.8N1—C18—H18B108.7
C10—C3—H3B109.8C15—C18—H18B108.7
C3—C4—C5109.6 (3)H18A—C18—H18B107.6
C3—C4—H4A109.8N1—C19—N2118.8 (3)
C5—C4—H4A109.8N1—C19—C22122.5 (3)
C3—C4—H4B109.8N2—C19—C22118.8 (3)
C5—C4—H4B109.8N3—C20—N2131.9 (3)
H4A—C4—H4B108.2N3—C20—Cl1114.8 (3)
C6—C5—C9110.0 (3)N2—C20—Cl1113.3 (3)
C6—C5—C4109.3 (3)N3—C21—N4126.1 (3)
C9—C5—C4109.2 (3)N3—C21—C22127.8 (3)
C6—C5—H5B109.4N4—C21—C22106.1 (3)
C9—C5—H5B109.4N5—C22—C21110.4 (3)
C4—C5—H5B109.4N5—C22—C19133.8 (3)
C5—C6—C7110.1 (3)C21—C22—C19115.7 (3)
C5—C6—H6A109.6N5—C23—N4113.9 (3)
C7—C6—H6A109.6N5—C23—H23A123.0
C5—C6—H6B109.6N4—C23—H23A123.0
C7—C6—H6B109.6N4—C24—C26110.1 (3)
H6A—C6—H6B108.2N4—C24—C25109.2 (3)
C10—C7—C8109.2 (3)C26—C24—C25113.3 (4)
C10—C7—C6109.4 (3)N4—C24—H24A108.0
C8—C7—C6110.0 (3)C26—C24—H24A108.0
C10—C7—H7A109.4C25—C24—H24A108.0
C8—C7—H7A109.4C24—C25—H25A109.5
C6—C7—H7A109.4C24—C25—H25B109.5
C7—C8—C1110.4 (3)H25A—C25—H25B109.5
C7—C8—H8A109.6C24—C25—H25C109.5
C1—C8—H8A109.6H25A—C25—H25C109.5
C7—C8—H8B109.6H25B—C25—H25C109.5
C1—C8—H8B109.6C24—C26—H26A109.5
H8A—C8—H8B108.1C24—C26—H26B109.5
C5—C9—C1109.6 (3)H26A—C26—H26B109.5
C5—C9—H9A109.7C24—C26—H26C109.5
C1—C9—H9A109.7H26A—C26—H26C109.5
C5—C9—H9B109.7H26B—C26—H26C109.5
C1—C9—H9B109.7Cl11—C27—Cl13110.5 (3)
H9A—C9—H9B108.2Cl11—C27—Cl12109.7 (3)
C7—C10—C3109.4 (3)Cl13—C27—Cl12110.1 (3)
C7—C10—H10A109.8Cl11—C27—H27A108.8
C3—C10—H10A109.8Cl13—C27—H27A108.8
C7—C10—H10B109.8Cl12—C27—H27A108.8
C3—C10—H10B109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.882.223.013 (5)150
C27—H27A···N2ii1.002.593.553 (6)161
C5—H5B···N3iii1.002.663.641 (5)166
C23—H23A···O1iv0.952.233.179 (5)175
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC26H30ClN5O·CHCl3
Mr583.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)19.434 (12), 13.186 (7), 22.149 (11)
V3)5676 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.45 × 0.40 × 0.20
Data collection
DiffractometerKuma KM4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.738, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
32219, 4984, 2981
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.177, 1.12
No. of reflections4984
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.54

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.882.223.013 (5)150.3
C27—H27A···N2ii1.002.593.553 (6)161.0
C5—H5B···N3iii1.002.663.641 (5)166.2
C23—H23A···O1iv0.952.233.179 (5)175.3
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y1, z.
 

Acknowledgements

Financial support of this work by the Science Foundation of the Czech Republic (grant No. 203/06/P362) and the Czech Ministry of Education (project No. MSM 7088352101) is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFiorini, M. T. & Abel, Ch. (1998). Tetrahedron Lett. 39, 1827–1830.  Web of Science CrossRef CAS Google Scholar
First citationLegraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987–4006.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLong, J., Manchandia, T., Ban, K., Gao, S., Miller, C. & Chandra, J. (2007). Cancer Chemother. Pharmacol. 59, 527–535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRouchal, M., Nečas, M., Carvalho, F. P. de & Vícha, R. (2009). Acta Cryst. E65, o298–o299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrávníček, Z. & Kryštof, V. (2004). Acta Cryst. E60, o2324–o2327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrávníček, Z. & Popa, I. (2007a). Acta Cryst. E63, o629–o631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrávníček, Z. & Popa, I. (2007b). Acta Cryst. E63, o728–o730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrávníček, Z. & Zatloukal, M. (2004). Acta Cryst. E60, o924–o926.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds