organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Nitro­benzyl­­idene)-2-(8-quinol­yl­oxy)acetohydrazide methanol solvate

aCollege of Chemistry and Pharmacy, Qingdao Agricultural University, Shandong 266109, People's Republic of China
*Correspondence e-mail: furbear01@163.com

(Received 1 April 2009; accepted 28 April 2009; online 7 May 2009)

In the title compound, C18H14N4O4·CH3OH, the mean planes of the benzene ring and the quinoline ring system make a dihedral angle of 15.5 (2)°. The methanol solvent mol­ecule forms an O—H⋯N hydrogen bond to the quinoline ring system and accepts an N—H⋯O hydrogen bond from the hydrazide NH group. The mol­ecules lie in layers approximately parallel to (101) and C—H⋯O inter­actions exist between mol­ecules within the layers.

Related literature

For the coordination chemistry of 8-hydroxy­quinoline and its derivatives, see: Chen & Shi (1998[Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.]); Mona & Wageih (2002[Mona, M. M. & Wageih, G. H. (2002). J. Coord. Chem. 55, 439-457.]). For a related structure, see: Tan (2009[Tan, J. (2009). Acta Cryst. E65, o651.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N4O4·CH4O

  • Mr = 382.37

  • Monoclinic, P 21 /c

  • a = 11.345 (10) Å

  • b = 11.559 (11) Å

  • c = 16.234 (12) Å

  • β = 120.06 (5)°

  • V = 1843 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.984

  • 9196 measured reflections

  • 3258 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.195

  • S = 1.00

  • 3258 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N1 0.82 2.02 2.817 (4) 164
N2—H2⋯O5 0.86 2.08 2.919 (4) 164
C17—H17⋯O3i 0.93 2.53 3.287 (5) 139
C18—H18⋯O4i 0.93 2.48 3.329 (5) 152
C3—H3⋯O2ii 0.93 2.58 3.233 (5) 128
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8-Hydroxyquinoline and its derivatives are well-known ligands in coordination chemistry (Chen & Shi, 1998; Mona & Wageih, 2002). In our search for new extractants of metal ions and biologically active materials, the title compound has been synthesized. In the crystal structure, all bond lengths and angles are normal and comparable to those in the related compound (E)-N'-[1-(4-hydroxyphenyl) ethylidene]-2-(quinolin-8-yloxy)acetohydrazide methanol solvate (Tan, 2009). The mean planes of the benzene ring and the quinoline rings make a dihedral angle of 15.5 (2)°. The methanol molecule is linked to the C18H14N4O4 molecule via intermolecular O—H···N and N—H···O hydrogen bonds (Fig. 1). The molecules lie in layers approximately parallel to (101) and C—H···O interactions exist between molecules.

Related literature top

For the coordination chemistry of 8-hydroxyquinoline and its derivatives, see: Chen & Shi (1998); Mona & Wageih (2002). For a related structure, see: Tan (2009).

Experimental top

2-(Quinolin-8-yloxy)acetohydrazide (2.18 g, 10 mmol), 4-nitrobenzaldehyde (1.51 g, 10 mmol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 3 h. After cooling to room temperature, the mixture was filtered. Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone-methanol (1:2, v/v) solution over a period of 3 d.

Refinement top

All H atoms were visible in a difference Fourier map, but were placed in calculated positions with C—H = 0.93 Å for aryl, 0.97 Å for methylene and 0.96 Å for the methyl H atoms, O—H = 0.82 Å and N—H = 0.86 Å, and refined as riding with Uiso(H) = 1.2Ueq(C/N), or 1.5Ueq(C) for the methyl groups, and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions (dashed lines). H atoms have been omitted for clarity.
(E)-N'-(4-Nitrobenzylidene)-2-(8-quinolyloxy)acetohydrazide methanol solvate top
Crystal data top
C18H14N4O4·CH4OF(000) = 800
Mr = 382.37Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1871 reflections
a = 11.345 (10) Åθ = 2.3–22.8°
b = 11.559 (11) ŵ = 0.10 mm1
c = 16.234 (12) ÅT = 295 K
β = 120.06 (5)°Block, colorless
V = 1843 (3) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3258 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1310
Tmin = 0.980, Tmax = 0.984k = 1213
9196 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1106P)2 + 0.0143P]
where P = (Fo2 + 2Fc2)/3
3258 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H14N4O4·CH4OV = 1843 (3) Å3
Mr = 382.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.345 (10) ŵ = 0.10 mm1
b = 11.559 (11) ÅT = 295 K
c = 16.234 (12) Å0.20 × 0.18 × 0.16 mm
β = 120.06 (5)°
Data collection top
Bruker SMART CCD
diffractometer
3258 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1872 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.050
9196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
3258 reflectionsΔρmin = 0.26 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1624 (2)0.23691 (14)1.11105 (14)0.0547 (6)
O20.1325 (2)0.07065 (16)1.10099 (16)0.0694 (7)
O30.4318 (3)0.4685 (3)0.7787 (2)0.1065 (10)
O40.5020 (4)0.3368 (3)0.7175 (2)0.1177 (12)
O50.2556 (3)0.27429 (19)0.9641 (2)0.0938 (9)
H50.25400.31801.00330.141*
N10.2147 (3)0.45024 (19)1.06723 (17)0.0541 (7)
N20.2130 (3)0.05140 (19)1.02969 (17)0.0547 (7)
H20.23100.12141.02190.066*
N30.2403 (3)0.0398 (2)0.98661 (17)0.0538 (7)
N40.4508 (3)0.3671 (3)0.7651 (2)0.0834 (9)
C10.2366 (3)0.5556 (3)1.0457 (2)0.0621 (9)
H10.28480.56211.01350.075*
C20.1921 (4)0.6582 (2)1.0679 (2)0.0652 (9)
H2A0.21010.72981.05040.078*
C30.1227 (4)0.6509 (2)1.1152 (2)0.0602 (9)
H30.09090.71761.12960.072*
C40.0985 (3)0.5417 (2)1.14255 (19)0.0510 (8)
C50.0322 (3)0.5278 (3)1.1966 (2)0.0605 (9)
H5A0.00140.59241.21230.073*
C60.0173 (3)0.4215 (3)1.2255 (2)0.0618 (9)
H60.02210.41411.26350.074*
C70.0611 (3)0.3223 (2)1.1981 (2)0.0569 (8)
H70.04830.24981.21720.068*
C80.1224 (3)0.3306 (2)1.14367 (19)0.0474 (7)
C90.1459 (3)0.4422 (2)1.11638 (18)0.0456 (7)
C100.1252 (3)0.1263 (2)1.1307 (2)0.0564 (8)
H10A0.02830.12631.10840.068*
H10B0.17280.11451.19900.068*
C110.1570 (3)0.0270 (2)1.0849 (2)0.0521 (8)
C120.2988 (3)0.0149 (2)0.9392 (2)0.0543 (8)
H120.31860.06190.93390.065*
C130.3350 (3)0.1051 (2)0.89341 (19)0.0511 (7)
C140.2917 (3)0.2196 (2)0.8882 (2)0.0602 (8)
H140.23670.23860.91350.072*
C150.3289 (3)0.3049 (3)0.8461 (2)0.0630 (9)
H150.29960.38080.84290.076*
C160.4108 (3)0.2748 (3)0.8090 (2)0.0604 (8)
C170.4521 (3)0.1636 (3)0.8101 (2)0.0663 (9)
H170.50480.14520.78280.080*
C180.4146 (3)0.0785 (3)0.8526 (2)0.0610 (9)
H180.44270.00260.85390.073*
C190.3321 (4)0.3241 (3)0.9278 (3)0.0858 (12)
H19A0.28050.38510.88450.129*
H19B0.35350.26640.89480.129*
H19C0.41490.35520.97910.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0850 (16)0.0254 (10)0.0755 (13)0.0023 (9)0.0564 (13)0.0003 (9)
O20.1058 (19)0.0270 (11)0.1018 (17)0.0034 (10)0.0717 (16)0.0019 (10)
O30.121 (3)0.069 (2)0.136 (3)0.0176 (17)0.069 (2)0.0199 (19)
O40.142 (3)0.125 (3)0.131 (3)0.015 (2)0.102 (3)0.0246 (19)
O50.158 (3)0.0435 (14)0.135 (2)0.0016 (14)0.115 (2)0.0028 (14)
N10.0780 (19)0.0345 (13)0.0612 (15)0.0063 (11)0.0433 (15)0.0001 (11)
N20.0777 (19)0.0262 (12)0.0716 (16)0.0015 (11)0.0458 (15)0.0002 (11)
N30.0709 (18)0.0345 (13)0.0654 (15)0.0027 (11)0.0412 (15)0.0025 (11)
N40.080 (2)0.092 (3)0.082 (2)0.0172 (19)0.0434 (19)0.016 (2)
C10.089 (3)0.0418 (18)0.070 (2)0.0116 (16)0.050 (2)0.0019 (15)
C20.098 (3)0.0310 (17)0.0654 (19)0.0110 (15)0.040 (2)0.0003 (14)
C30.087 (3)0.0307 (16)0.0627 (19)0.0032 (14)0.037 (2)0.0045 (14)
C40.068 (2)0.0328 (16)0.0490 (16)0.0031 (13)0.0269 (16)0.0067 (12)
C50.077 (2)0.0457 (19)0.069 (2)0.0000 (15)0.0442 (19)0.0144 (15)
C60.082 (3)0.0512 (19)0.072 (2)0.0057 (16)0.053 (2)0.0076 (16)
C70.083 (2)0.0366 (16)0.0660 (19)0.0038 (14)0.0488 (19)0.0007 (14)
C80.065 (2)0.0309 (15)0.0525 (16)0.0004 (12)0.0337 (16)0.0022 (12)
C90.062 (2)0.0324 (15)0.0469 (15)0.0053 (12)0.0306 (15)0.0034 (12)
C100.088 (2)0.0266 (14)0.0736 (19)0.0052 (14)0.0549 (19)0.0000 (13)
C110.069 (2)0.0314 (16)0.0642 (19)0.0019 (13)0.0396 (18)0.0020 (13)
C120.069 (2)0.0382 (17)0.0608 (18)0.0017 (14)0.0365 (18)0.0021 (13)
C130.060 (2)0.0408 (17)0.0543 (17)0.0012 (13)0.0301 (16)0.0014 (13)
C140.077 (2)0.0435 (17)0.080 (2)0.0036 (15)0.054 (2)0.0005 (16)
C150.074 (2)0.0431 (18)0.079 (2)0.0003 (15)0.044 (2)0.0031 (16)
C160.062 (2)0.059 (2)0.0636 (19)0.0077 (16)0.0339 (18)0.0069 (16)
C170.071 (2)0.074 (2)0.069 (2)0.0113 (17)0.046 (2)0.0087 (18)
C180.069 (2)0.0535 (19)0.070 (2)0.0128 (15)0.0422 (19)0.0046 (16)
C190.100 (3)0.083 (3)0.086 (3)0.002 (2)0.055 (3)0.005 (2)
Geometric parameters (Å, º) top
O1—C81.378 (3)C6—C71.407 (4)
O1—C101.431 (3)C6—H60.930
O2—C111.222 (3)C7—C81.375 (4)
O3—N41.232 (4)C7—H70.930
O4—N41.227 (4)C8—C91.431 (4)
O5—C191.394 (4)C10—C111.506 (4)
O5—H50.820C10—H10A0.970
N1—C11.324 (4)C10—H10B0.970
N1—C91.371 (4)C12—C131.455 (4)
N2—C111.362 (4)C12—H120.930
N2—N31.383 (3)C13—C181.395 (4)
N2—H20.860C13—C141.399 (4)
N3—C121.275 (4)C14—C151.380 (4)
N4—C161.476 (4)C14—H140.930
C1—C21.406 (4)C15—C161.381 (4)
C1—H10.930C15—H150.930
C2—C31.350 (5)C16—C171.366 (4)
C2—H2A0.930C17—C181.385 (4)
C3—C41.411 (4)C17—H170.930
C3—H30.930C18—H180.930
C4—C91.421 (4)C19—H19A0.960
C4—C51.422 (4)C19—H19B0.960
C5—C61.355 (4)C19—H19C0.960
C5—H5A0.930
C8—O1—C10115.2 (2)O1—C10—C11113.6 (2)
C19—O5—H5109.5O1—C10—H10A108.8
C1—N1—C9116.9 (2)C11—C10—H10A108.8
C11—N2—N3118.1 (2)O1—C10—H10B108.8
C11—N2—H2121.0C11—C10—H10B108.8
N3—N2—H2120.9H10A—C10—H10B107.7
C12—N3—N2116.6 (2)O2—C11—N2124.3 (3)
O4—N4—O3124.4 (3)O2—C11—C10117.5 (3)
O4—N4—C16117.1 (4)N2—C11—C10118.2 (2)
O3—N4—C16118.5 (3)N3—C12—C13120.8 (3)
N1—C1—C2124.7 (3)N3—C12—H12119.6
N1—C1—H1117.6C13—C12—H12119.6
C2—C1—H1117.6C18—C13—C14118.1 (3)
C3—C2—C1118.7 (3)C18—C13—C12120.0 (3)
C3—C2—H2A120.7C14—C13—C12121.9 (3)
C1—C2—H2A120.7C15—C14—C13121.4 (3)
C2—C3—C4119.8 (3)C15—C14—H14119.3
C2—C3—H3120.1C13—C14—H14119.3
C4—C3—H3120.1C14—C15—C16118.3 (3)
C3—C4—C9117.9 (3)C14—C15—H15120.8
C3—C4—C5122.8 (3)C16—C15—H15120.8
C9—C4—C5119.3 (3)C17—C16—C15122.3 (3)
C6—C5—C4120.8 (3)C17—C16—N4120.0 (3)
C6—C5—H5A119.6C15—C16—N4117.8 (3)
C4—C5—H5A119.6C16—C17—C18119.0 (3)
C5—C6—C7120.3 (3)C16—C17—H17120.5
C5—C6—H6119.9C18—C17—H17120.5
C7—C6—H6119.9C17—C18—C13120.9 (3)
C8—C7—C6121.3 (3)C17—C18—H18119.6
C8—C7—H7119.4C13—C18—H18119.6
C6—C7—H7119.4O5—C19—H19A109.5
C7—C8—O1124.2 (2)O5—C19—H19B109.5
C7—C8—C9119.6 (2)H19A—C19—H19B109.5
O1—C8—C9116.2 (2)O5—C19—H19C109.5
N1—C9—C4122.0 (2)H19A—C19—H19C109.5
N1—C9—C8119.3 (2)H19B—C19—H19C109.5
C4—C9—C8118.7 (3)
C11—N2—N3—C12176.7 (3)O1—C8—C9—C4175.8 (3)
C9—N1—C1—C21.3 (5)C8—O1—C10—C11173.7 (3)
N1—C1—C2—C30.4 (5)N3—N2—C11—O22.0 (5)
C1—C2—C3—C41.1 (5)N3—N2—C11—C10179.0 (3)
C2—C3—C4—C91.7 (5)O1—C10—C11—O2177.6 (3)
C2—C3—C4—C5176.8 (3)O1—C10—C11—N21.4 (4)
C3—C4—C5—C6176.6 (3)N2—N3—C12—C13178.4 (3)
C9—C4—C5—C61.9 (5)N3—C12—C13—C18171.6 (3)
C4—C5—C6—C73.3 (5)N3—C12—C13—C148.8 (5)
C5—C6—C7—C81.5 (5)C18—C13—C14—C151.6 (5)
C6—C7—C8—O1177.1 (3)C12—C13—C14—C15178.7 (3)
C6—C7—C8—C91.8 (5)C13—C14—C15—C160.1 (5)
C10—O1—C8—C75.2 (4)C14—C15—C16—C172.0 (5)
C10—O1—C8—C9173.7 (3)C14—C15—C16—N4179.4 (3)
C1—N1—C9—C40.6 (4)O4—N4—C16—C1711.5 (5)
C1—N1—C9—C8178.4 (3)O3—N4—C16—C17168.2 (4)
C3—C4—C9—N10.9 (4)O4—N4—C16—C15167.1 (3)
C5—C4—C9—N1177.7 (3)O3—N4—C16—C1513.2 (5)
C3—C4—C9—C8179.9 (3)C15—C16—C17—C182.1 (5)
C5—C4—C9—C81.4 (4)N4—C16—C17—C18179.3 (3)
C7—C8—C9—N1175.9 (3)C16—C17—C18—C130.3 (5)
O1—C8—C9—N15.1 (4)C14—C13—C18—C171.5 (5)
C7—C8—C9—C43.2 (4)C12—C13—C18—C17178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.022.817 (4)164
N2—H2···O50.862.082.919 (4)164
C17—H17···O3i0.932.533.287 (5)139
C18—H18···O4i0.932.483.329 (5)152
C3—H3···O2ii0.932.583.233 (5)128
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14N4O4·CH4O
Mr382.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.345 (10), 11.559 (11), 16.234 (12)
β (°) 120.06 (5)
V3)1843 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9196, 3258, 1872
Rint0.050
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.195, 1.00
No. of reflections3258
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.022.817 (4)164.2
N2—H2···O50.862.082.919 (4)163.8
C17—H17···O3i0.932.533.287 (5)138.6
C18—H18···O4i0.932.483.329 (5)152.0
C3—H3···O2ii0.932.583.233 (5)127.8
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z.
 

References

First citationChen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161–174.  Web of Science CrossRef CAS Google Scholar
First citationMona, M. M. & Wageih, G. H. (2002). J. Coord. Chem. 55, 439–457.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTan, J. (2009). Acta Cryst. E65, o651.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds