organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­benzoyl­hydrazine–di­methyl­formamide (3/1)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, bClinical Medicine Department, Weifang Medical University, Weifang, Shangdong, 261042, People's Republic of China, cShandong Wuxun High School, Guanxian, Shandong 252500, People's Republic of China, and dPetroChina Jinxi Branch Company (Bihai), 125001, People's Republic of China
*Correspondence e-mail: heqp2008@163.com

(Received 5 April 2009; accepted 5 May 2009; online 14 May 2009)

The title compound, 3C14H12N2O2·C3H7NO, was synthesized by reaction of benzoyl chloride with hydrazine hydrate under microwave irradition. The asymmetric unit comprises three 1,2-dibenzoyl­hydrazine mol­ecules and one dimethyl­formamide mol­ecule. The 1,2-dibenzoyl­hydrazine mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into chains propagating along [010].

Related literature

For background literature concerning microwave-assisted synthesis, see: Galema (1997[Galema, S. A. (1997). Chem. Soc. Rev. 26, 233-238.]). For the unsolvated crystal structure of 1,2-dibenzoyl­hydrazine, see: Shanmuga Sundara Raj et al. (2000[Shanmuga Sundara Raj, S., Yamin, B. M., Boshaala, A. M. A., Tarafder, M. T. H., Crouse, K. A. & Fun, H.-K. (2000). Acta Cryst. C56, 1011-1012.]).

[Scheme 1]

Experimental

Crystal data
  • 3C14H12N2O2·C3H7NO

  • Mr = 793.86

  • Triclinic, [P \overline 1]

  • a = 10.7666 (12) Å

  • b = 11.4615 (13) Å

  • c = 18.100 (2) Å

  • α = 100.127 (2)°

  • β = 96.084 (2)°

  • γ = 108.382 (3)°

  • V = 2055.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.32 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.977

  • 6846 measured reflections

  • 4163 independent reflections

  • 2487 reflections with I > 2σ(I)

  • Rint = 0.075

  • θmax = 20.8°

Refinement
  • R[F2 > 2σ(F2)] = 0.120

  • wR(F2) = 0.359

  • S = 1.14

  • 4163 reflections

  • 534 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.86 2.04 2.846 (9) 156
N6—H6⋯O2ii 0.86 2.01 2.826 (9) 157
N2—H2⋯O3 0.86 2.00 2.800 (9) 155
N3—H3⋯O6 0.86 1.96 2.778 (10) 158
N4—H4⋯O1 0.86 1.92 2.743 (9) 160
N5—H5⋯O4 0.86 1.97 2.774 (9) 155
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, high-speed synthesis using microwave radiation has attracted considerable attention, and some important reviews in the study of microwave-assisted organic synthesis have been published (Galema, 1997). We describe in this paper a user-friendly microwave irradiation protocol for the synthesis of the title compound, and its crystal structure.

In the crystal structure, the asymmetric unit comprises three 1,2-dibenzoylhydrazine molecules and one dimethylformamide solvent molecule. The bond lengths and angles are normal and comparable to those in the unsolvated crystal structure of 1,2-dibenzoylhydrazine (Shanmuga Sundara Raj et al., 2000). Molecules are linked by N—H···O hydrogen bonds between the amide H and carbonyl O atoms, forming ten-membered rings, into chains propagating along [010]. the dimethylformamide molecules lie between these chains.

Related literature top

For background literature concerning microwave-assisted synthesis, see: Galema (1997). For the unsolvated crystal structure of 1,2-dibenzoylhydrazine, see: Shanmuga Sundara Raj et al. (2000).

Experimental top

Benzoyl chloride (0.5 mmol) and hydrazine hydrate (0.5 mmol) were mixed in a 50 ml flask. After microwave irradiation for 5 min at 275 W, then cooling to room temperature, the resulting mixture was washed with 10 ml water to yield a white product. The crude product was recrystallised from ethanol to afford the title compound as a crystalline solid. Elemental analysis calculated for C45H43N7O7: C 68.08, H 5.46, N 12.35%; found: C 68.24, H 5.68, N 12.28%.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.96 Å, N—H 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5 Ueq(C/N). The crystal diffracted relatively weakly and data are truncated to 1.00 Å resolution, with ca 60% of data observed at the 2σ(I) level. The structure is therefore of relatively low precision.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.The solvent molecular is omitted for clarity.
1,2-Dibenzoylhydrazine–dimethylformamide (3/1) top
Crystal data top
3C14H12N2O2·C3H7NOZ = 2
Mr = 793.86F(000) = 836
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7666 (12) ÅCell parameters from 1452 reflections
b = 11.4615 (13) Åθ = 2.3–21.0°
c = 18.100 (2) ŵ = 0.09 mm1
α = 100.127 (2)°T = 298 K
β = 96.084 (2)°Needle, colourless
γ = 108.382 (3)°0.50 × 0.32 × 0.27 mm
V = 2055.2 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4163 independent reflections
Radiation source: fine-focus sealed tube2487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 20.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.957, Tmax = 0.977k = 1111
6846 measured reflectionsl = 1018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.120Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.359H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
4163 reflections(Δ/σ)max = 0.001
534 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
3C14H12N2O2·C3H7NOγ = 108.382 (3)°
Mr = 793.86V = 2055.2 (4) Å3
Triclinic, P1Z = 2
a = 10.7666 (12) ÅMo Kα radiation
b = 11.4615 (13) ŵ = 0.09 mm1
c = 18.100 (2) ÅT = 298 K
α = 100.127 (2)°0.50 × 0.32 × 0.27 mm
β = 96.084 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4163 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2487 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.977Rint = 0.075
6846 measured reflectionsθmax = 20.8°
Refinement top
R[F2 > 2σ(F2)] = 0.1200 restraints
wR(F2) = 0.359H-atom parameters constrained
S = 1.14Δρmax = 0.66 e Å3
4163 reflectionsΔρmin = 0.52 e Å3
534 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1213 (7)0.7581 (6)0.2502 (4)0.0367 (18)
H10.08270.81320.25850.044*
N20.1953 (7)0.7353 (7)0.3099 (4)0.0373 (19)
H20.16420.66710.32570.045*
N30.1123 (6)0.3584 (6)0.2436 (4)0.0377 (19)
H30.09580.28270.21840.045*
N40.2312 (6)0.4518 (6)0.2435 (4)0.0364 (18)
H40.23160.50890.21840.044*
N50.1935 (7)0.1264 (6)0.3108 (4)0.0368 (18)
H50.23420.20620.32680.044*
N60.2322 (7)0.0597 (6)0.2525 (4)0.0354 (18)
H60.27660.01170.26190.042*
N70.380 (3)0.619 (2)0.8906 (19)0.200 (10)
O10.1675 (7)0.6159 (6)0.1659 (3)0.0541 (18)
O20.3604 (6)0.9179 (6)0.3238 (3)0.0472 (17)
O30.0421 (6)0.4918 (6)0.3186 (4)0.0495 (17)
O40.3487 (5)0.3746 (6)0.3198 (3)0.0460 (16)
O50.0327 (6)0.0487 (6)0.3225 (3)0.0491 (17)
O60.1339 (7)0.1356 (6)0.1664 (3)0.0550 (18)
O70.5384 (19)0.6803 (19)1.0039 (13)0.241 (8)
C10.1106 (9)0.6927 (8)0.1791 (5)0.036 (2)
C20.0228 (9)0.7136 (8)0.1180 (5)0.040 (2)
C30.0276 (11)0.6610 (10)0.0446 (6)0.062 (3)
H3A0.08730.61870.03590.074*
C40.0520 (15)0.6694 (11)0.0146 (6)0.077 (4)
H4A0.04520.63460.06380.093*
C50.1417 (14)0.7274 (14)0.0044 (7)0.082 (4)
H5A0.19770.73070.04620.099*
C60.1506 (11)0.7816 (12)0.0676 (8)0.080 (4)
H6A0.21320.82080.07530.095*
C70.0630 (10)0.7770 (10)0.1300 (6)0.059 (3)
H70.06420.81730.17910.071*
C80.3152 (9)0.8189 (8)0.3433 (4)0.032 (2)
C90.3875 (8)0.7849 (8)0.4068 (4)0.034 (2)
C100.3335 (9)0.6761 (9)0.4323 (5)0.042 (2)
H100.24860.62100.40990.050*
C110.4055 (10)0.6491 (11)0.4910 (5)0.058 (3)
H110.37090.57390.50660.070*
C120.5278 (11)0.7334 (12)0.5261 (6)0.069 (3)
H120.57460.71860.56760.083*
C130.5791 (11)0.8381 (12)0.4996 (7)0.079 (4)
H130.66420.89300.52170.095*
C140.5094 (9)0.8667 (10)0.4404 (5)0.059 (3)
H140.54590.94090.42420.071*
C150.0250 (8)0.3862 (9)0.2823 (5)0.034 (2)
C160.1008 (8)0.2810 (8)0.2787 (5)0.037 (2)
C170.1390 (9)0.1684 (10)0.2308 (6)0.061 (3)
H170.08480.15360.19620.073*
C180.2547 (12)0.0737 (11)0.2306 (8)0.088 (4)
H180.27880.00210.19490.106*
C190.3312 (12)0.0886 (12)0.2797 (7)0.079 (4)
H190.40760.02250.28050.094*
C200.2992 (11)0.2016 (14)0.3301 (7)0.096 (5)
H200.35580.21500.36350.115*
C210.1791 (10)0.2973 (11)0.3306 (6)0.072 (3)
H210.15320.37260.36690.086*
C220.3466 (8)0.4540 (8)0.2825 (5)0.028 (2)
C230.4680 (8)0.5553 (8)0.2778 (5)0.035 (2)
C240.5759 (9)0.5837 (11)0.3321 (6)0.060 (3)
H240.57330.53760.36970.073*
C250.6887 (10)0.6805 (12)0.3313 (7)0.075 (3)
H250.76040.70210.37060.091*
C260.7002 (11)0.7455 (12)0.2764 (8)0.078 (4)
H260.77960.80800.27550.093*
C270.5919 (13)0.7169 (12)0.2219 (8)0.090 (4)
H270.59640.76150.18340.108*
C280.4764 (10)0.6236 (11)0.2228 (6)0.064 (3)
H280.40270.60640.18560.077*
C290.0926 (8)0.0672 (9)0.3427 (5)0.034 (2)
C300.0563 (8)0.1458 (8)0.4058 (4)0.031 (2)
C310.1238 (9)0.2727 (9)0.4328 (5)0.043 (2)
H310.19560.31290.41120.052*
C320.0865 (10)0.3404 (11)0.4910 (6)0.060 (3)
H320.13100.42680.50740.072*
C330.0139 (11)0.2833 (13)0.5246 (6)0.069 (3)
H330.03570.32950.56560.082*
C340.0833 (14)0.1591 (14)0.4992 (7)0.090 (4)
H340.15460.12040.52170.108*
C350.0472 (10)0.0886 (10)0.4387 (6)0.063 (3)
H350.09430.00290.42120.076*
C360.2001 (9)0.0699 (8)0.1802 (5)0.036 (2)
C370.2514 (9)0.0059 (8)0.1209 (5)0.040 (2)
C380.3468 (10)0.0487 (10)0.1344 (6)0.060 (3)
H380.38150.04600.18420.072*
C390.3899 (14)0.1055 (13)0.0763 (9)0.097 (4)
H390.45260.14350.08610.116*
C400.342 (2)0.1079 (14)0.0027 (10)0.109 (5)
H400.37630.14230.03730.131*
C410.2433 (19)0.0595 (15)0.0117 (7)0.103 (5)
H410.20610.06570.06170.123*
C420.2011 (12)0.0039 (10)0.0458 (6)0.065 (3)
H420.13510.03000.03520.079*
C430.410 (3)0.596 (3)0.962 (2)0.211 (14)
H430.35330.53260.98040.253*
C440.486 (3)0.704 (2)0.8626 (15)0.210 (11)
H44A0.49080.78900.88130.315*
H44B0.46850.68390.80790.315*
H44C0.56900.69440.88020.315*
C450.252 (3)0.556 (2)0.8505 (16)0.214 (12)
H45A0.20290.49920.87830.321*
H45B0.25580.51020.80150.321*
H45C0.20960.61680.84380.321*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.046 (4)0.032 (4)0.037 (5)0.022 (4)0.004 (3)0.012 (4)
N20.047 (5)0.030 (4)0.035 (4)0.014 (4)0.007 (4)0.015 (3)
N30.032 (4)0.018 (4)0.053 (5)0.001 (4)0.006 (4)0.001 (3)
N40.028 (4)0.024 (4)0.055 (5)0.003 (4)0.005 (4)0.017 (3)
N50.055 (5)0.021 (4)0.036 (4)0.013 (4)0.014 (4)0.009 (3)
N60.055 (5)0.029 (4)0.032 (4)0.021 (4)0.017 (4)0.012 (3)
N70.137 (19)0.131 (18)0.30 (3)0.011 (15)0.05 (2)0.01 (2)
O10.076 (5)0.049 (4)0.050 (4)0.038 (4)0.008 (3)0.016 (3)
O20.046 (4)0.033 (4)0.058 (4)0.007 (3)0.005 (3)0.021 (3)
O30.048 (4)0.026 (4)0.068 (4)0.006 (3)0.014 (3)0.004 (3)
O40.038 (4)0.038 (4)0.060 (4)0.006 (3)0.001 (3)0.025 (3)
O50.051 (4)0.028 (4)0.062 (4)0.006 (3)0.020 (3)0.003 (3)
O60.086 (5)0.049 (4)0.043 (4)0.043 (4)0.005 (3)0.011 (3)
O70.176 (15)0.178 (17)0.33 (2)0.041 (14)0.001 (15)0.025 (16)
C10.048 (6)0.021 (5)0.038 (6)0.006 (5)0.002 (4)0.011 (4)
C20.048 (6)0.022 (5)0.049 (6)0.012 (5)0.008 (5)0.016 (5)
C30.088 (8)0.046 (7)0.044 (7)0.028 (6)0.015 (6)0.005 (5)
C40.113 (10)0.069 (9)0.042 (7)0.032 (8)0.014 (7)0.002 (6)
C50.089 (9)0.095 (10)0.057 (9)0.025 (8)0.014 (7)0.031 (7)
C60.065 (8)0.096 (10)0.103 (11)0.051 (7)0.012 (7)0.044 (8)
C70.059 (7)0.069 (8)0.053 (6)0.028 (6)0.002 (5)0.018 (5)
C80.047 (6)0.019 (5)0.033 (5)0.016 (5)0.005 (5)0.006 (4)
C90.037 (6)0.034 (6)0.033 (5)0.017 (5)0.001 (4)0.004 (4)
C100.040 (5)0.046 (6)0.035 (5)0.012 (5)0.004 (4)0.013 (5)
C110.054 (7)0.068 (7)0.055 (6)0.016 (6)0.004 (5)0.037 (6)
C120.066 (8)0.083 (9)0.062 (7)0.026 (7)0.009 (6)0.036 (7)
C130.068 (8)0.068 (9)0.087 (9)0.014 (7)0.037 (7)0.024 (7)
C140.046 (6)0.052 (7)0.064 (7)0.004 (6)0.013 (6)0.009 (6)
C150.029 (5)0.026 (6)0.045 (5)0.006 (5)0.003 (4)0.010 (5)
C160.026 (5)0.037 (6)0.039 (5)0.002 (5)0.001 (4)0.008 (5)
C170.031 (6)0.045 (7)0.084 (8)0.012 (5)0.002 (5)0.012 (6)
C180.069 (8)0.056 (8)0.100 (10)0.033 (7)0.014 (8)0.018 (7)
C190.056 (8)0.068 (9)0.079 (9)0.021 (7)0.003 (7)0.019 (7)
C200.061 (8)0.103 (12)0.093 (9)0.022 (8)0.033 (7)0.021 (9)
C210.046 (7)0.077 (9)0.066 (7)0.004 (6)0.008 (6)0.001 (6)
C220.026 (5)0.023 (5)0.036 (5)0.008 (4)0.004 (4)0.010 (4)
C230.026 (5)0.033 (5)0.045 (5)0.008 (4)0.010 (5)0.011 (5)
C240.034 (6)0.075 (8)0.065 (7)0.005 (6)0.006 (5)0.027 (6)
C250.049 (7)0.068 (8)0.081 (8)0.013 (6)0.003 (6)0.010 (7)
C260.050 (8)0.067 (9)0.097 (9)0.005 (6)0.018 (7)0.013 (8)
C270.070 (9)0.083 (10)0.104 (10)0.006 (8)0.012 (8)0.053 (8)
C280.041 (6)0.074 (8)0.079 (7)0.005 (6)0.009 (5)0.046 (7)
C290.038 (5)0.029 (6)0.039 (5)0.015 (5)0.007 (4)0.010 (5)
C300.039 (5)0.030 (6)0.026 (5)0.013 (4)0.006 (4)0.009 (4)
C310.045 (6)0.042 (7)0.040 (5)0.015 (5)0.010 (4)0.001 (5)
C320.061 (7)0.057 (7)0.058 (7)0.023 (6)0.014 (6)0.004 (6)
C330.076 (8)0.072 (9)0.057 (7)0.031 (7)0.025 (6)0.009 (6)
C340.109 (10)0.088 (11)0.098 (9)0.045 (9)0.073 (8)0.031 (8)
C350.067 (7)0.054 (7)0.070 (7)0.015 (6)0.040 (6)0.012 (6)
C360.053 (6)0.021 (5)0.038 (6)0.011 (5)0.014 (5)0.013 (4)
C370.045 (6)0.035 (6)0.038 (6)0.007 (5)0.013 (4)0.008 (4)
C380.063 (7)0.076 (8)0.052 (6)0.038 (6)0.022 (5)0.010 (6)
C390.116 (11)0.104 (11)0.093 (11)0.063 (9)0.048 (9)0.017 (9)
C400.160 (15)0.077 (11)0.089 (13)0.028 (11)0.070 (11)0.008 (9)
C410.165 (15)0.091 (11)0.060 (9)0.050 (11)0.024 (9)0.022 (8)
C420.115 (9)0.050 (7)0.045 (7)0.039 (7)0.028 (7)0.016 (5)
C430.16 (3)0.13 (2)0.31 (4)0.020 (19)0.04 (3)0.00 (3)
C440.17 (2)0.14 (2)0.29 (3)0.017 (17)0.06 (2)0.00 (2)
C450.15 (2)0.14 (2)0.30 (3)0.001 (17)0.02 (2)0.01 (2)
Geometric parameters (Å, º) top
N1—C11.344 (10)C17—C181.369 (14)
N1—N21.385 (9)C17—H170.930
N1—H10.860C18—C191.298 (16)
N2—C81.342 (10)C18—H180.930
N2—H20.860C19—C201.366 (17)
N3—C151.313 (10)C19—H190.930
N3—N41.385 (9)C20—C211.405 (15)
N3—H30.860C20—H200.930
N4—C221.353 (10)C21—H210.930
N4—H40.860C22—C231.472 (12)
N5—C291.333 (10)C23—C241.352 (12)
N5—N61.372 (9)C23—C281.363 (12)
N5—H50.860C24—C251.366 (14)
N6—C361.352 (10)C24—H240.930
N6—H60.860C25—C261.337 (16)
N7—C431.38 (3)C25—H250.930
N7—C451.39 (3)C26—C271.357 (15)
N7—C441.45 (3)C26—H260.930
O1—C11.226 (10)C27—C281.365 (15)
O2—C81.215 (9)C27—H270.930
O3—C151.219 (10)C28—H280.930
O4—C221.229 (9)C29—C301.492 (11)
O5—C291.247 (10)C30—C351.357 (12)
O6—C361.227 (10)C30—C311.375 (11)
O7—C431.45 (3)C31—C321.369 (13)
C1—C21.480 (12)C31—H310.930
C2—C71.356 (13)C32—C331.341 (14)
C2—C31.372 (13)C32—H320.930
C3—C41.337 (14)C33—C341.350 (16)
C3—H3A0.930C33—H330.930
C4—C51.345 (16)C34—C351.408 (15)
C4—H4A0.930C34—H340.930
C5—C61.368 (16)C35—H350.930
C5—H5A0.930C36—C371.450 (12)
C6—C71.412 (15)C37—C421.381 (13)
C6—H6A0.930C37—C381.383 (13)
C7—H70.930C38—C391.340 (15)
C8—C91.497 (12)C38—H380.930
C9—C141.351 (12)C39—C401.369 (19)
C9—C101.380 (12)C39—H390.930
C10—C111.386 (12)C40—C411.37 (2)
C10—H100.930C40—H400.930
C11—C121.369 (14)C41—C421.321 (18)
C11—H110.930C41—H410.930
C12—C131.347 (15)C42—H420.930
C12—H120.930C43—H430.930
C13—C141.389 (14)C44—H44A0.960
C13—H130.930C44—H44B0.960
C14—H140.930C44—H44C0.960
C15—C161.488 (12)C45—H45A0.960
C16—C171.335 (13)C45—H45B0.960
C16—C211.354 (12)C45—H45C0.960
C1—N1—N2118.9 (7)C16—C21—C20120.7 (11)
C1—N1—H1120.5C16—C21—H21119.7
N2—N1—H1120.5C20—C21—H21119.7
C8—N2—N1120.5 (7)O4—C22—N4121.0 (7)
C8—N2—H2119.7O4—C22—C23122.2 (7)
N1—N2—H2119.7N4—C22—C23116.8 (8)
C15—N3—N4119.7 (6)C24—C23—C28118.5 (9)
C15—N3—H3120.1C24—C23—C22117.9 (8)
N4—N3—H3120.1C28—C23—C22123.6 (8)
C22—N4—N3120.8 (7)C23—C24—C25119.5 (10)
C22—N4—H4119.6C23—C24—H24120.2
N3—N4—H4119.6C25—C24—H24120.2
C29—N5—N6119.9 (7)C26—C25—C24122.7 (11)
C29—N5—H5120.1C26—C25—H25118.6
N6—N5—H5120.1C24—C25—H25118.6
C36—N6—N5119.5 (7)C25—C26—C27117.6 (11)
C36—N6—H6120.2C25—C26—H26121.2
N5—N6—H6120.2C27—C26—H26121.2
C43—N7—C45118 (3)C26—C27—C28120.9 (12)
C43—N7—C44118 (3)C26—C27—H27119.6
C45—N7—C44125 (3)C28—C27—H27119.6
O1—C1—N1121.5 (8)C23—C28—C27120.7 (10)
O1—C1—C2121.5 (8)C23—C28—H28119.7
N1—C1—C2117.0 (8)C27—C28—H28119.7
C7—C2—C3118.9 (8)O5—C29—N5122.2 (7)
C7—C2—C1124.6 (9)O5—C29—C30120.9 (8)
C3—C2—C1116.4 (9)N5—C29—C30116.9 (8)
C4—C3—C2121.2 (11)C35—C30—C31118.7 (8)
C4—C3—H3A119.4C35—C30—C29118.3 (8)
C2—C3—H3A119.4C31—C30—C29123.0 (8)
C3—C4—C5121.2 (11)C32—C31—C30120.7 (9)
C3—C4—H4A119.4C32—C31—H31119.6
C5—C4—H4A119.4C30—C31—H31119.6
C4—C5—C6119.9 (11)C33—C32—C31120.5 (10)
C4—C5—H5A120.0C33—C32—H32119.7
C6—C5—H5A120.0C31—C32—H32119.7
C5—C6—C7118.9 (11)C32—C33—C34120.4 (10)
C5—C6—H6A120.5C32—C33—H33119.8
C7—C6—H6A120.5C34—C33—H33119.8
C2—C7—C6119.7 (10)C33—C34—C35119.6 (10)
C2—C7—H7120.2C33—C34—H34120.2
C6—C7—H7120.2C35—C34—H34120.2
O2—C8—N2121.4 (7)C30—C35—C34120.0 (10)
O2—C8—C9122.3 (8)C30—C35—H35120.0
N2—C8—C9116.3 (8)C34—C35—H35120.0
C14—C9—C10120.1 (8)O6—C36—N6120.5 (8)
C14—C9—C8117.3 (9)O6—C36—C37121.5 (8)
C10—C9—C8122.6 (8)N6—C36—C37118.0 (9)
C9—C10—C11120.1 (8)C42—C37—C38117.1 (9)
C9—C10—H10120.0C42—C37—C36118.7 (9)
C11—C10—H10120.0C38—C37—C36124.2 (9)
C12—C11—C10119.8 (10)C39—C38—C37120.6 (11)
C12—C11—H11120.1C39—C38—H38119.7
C10—C11—H11120.1C37—C38—H38119.7
C13—C12—C11119.0 (9)C38—C39—C40120.4 (13)
C13—C12—H12120.5C38—C39—H39119.8
C11—C12—H12120.5C40—C39—H39119.8
C12—C13—C14122.2 (10)C41—C40—C39119.7 (13)
C12—C13—H13118.9C41—C40—H40120.2
C14—C13—H13118.9C39—C40—H40120.2
C9—C14—C13118.8 (10)C42—C41—C40119.5 (13)
C9—C14—H14120.6C42—C41—H41120.3
C13—C14—H14120.6C40—C41—H41120.3
O3—C15—N3123.3 (7)C41—C42—C37122.6 (12)
O3—C15—C16120.3 (8)C41—C42—H42118.7
N3—C15—C16116.4 (8)C37—C42—H42118.7
C17—C16—C21117.0 (9)N7—C43—O7113 (4)
C17—C16—C15124.9 (8)N7—C43—H43123.4
C21—C16—C15118.0 (8)O7—C43—H43123.4
C16—C17—C18122.8 (11)N7—C44—H44A109.5
C16—C17—H17118.6N7—C44—H44B109.5
C18—C17—H17118.6H44A—C44—H44B109.5
C19—C18—C17120.7 (12)N7—C44—H44C109.5
C19—C18—H18119.6H44A—C44—H44C109.5
C17—C18—H18119.6H44B—C44—H44C109.5
C18—C19—C20119.9 (11)N7—C45—H45A109.5
C18—C19—H19120.1N7—C45—H45B109.5
C20—C19—H19120.1H45A—C45—H45B109.5
C19—C20—C21118.8 (12)N7—C45—H45C109.5
C19—C20—H20120.6H45A—C45—H45C109.5
C21—C20—H20120.6H45B—C45—H45C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.042.846 (9)156
N6—H6···O2ii0.862.012.826 (9)157
N2—H2···O30.862.002.800 (9)155
N3—H3···O60.861.962.778 (10)158
N4—H4···O10.861.922.743 (9)160
N5—H5···O40.861.972.774 (9)155
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula3C14H12N2O2·C3H7NO
Mr793.86
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.7666 (12), 11.4615 (13), 18.100 (2)
α, β, γ (°)100.127 (2), 96.084 (2), 108.382 (3)
V3)2055.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.32 × 0.27
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6846, 4163, 2487
Rint0.075
θmax (°)20.8
(sin θ/λ)max1)0.500
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.120, 0.359, 1.14
No. of reflections4163
No. of parameters534
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.52

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.042.846 (9)155.9
N6—H6···O2ii0.862.012.826 (9)157.4
N2—H2···O30.862.002.800 (9)155.1
N3—H3···O60.861.962.778 (10)157.5
N4—H4···O10.861.922.743 (9)159.6
N5—H5···O40.861.972.774 (9)155.2
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

This project was supported by the Foundation of Liaocheng University (grant No. X071013).

References

First citationGalema, S. A. (1997). Chem. Soc. Rev. 26, 233–238.  CrossRef CAS Web of Science Google Scholar
First citationShanmuga Sundara Raj, S., Yamin, B. M., Boshaala, A. M. A., Tarafder, M. T. H., Crouse, K. A. & Fun, H.-K. (2000). Acta Cryst. C56, 1011–1012.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds