metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ2-azido-κ2N1:N1)[μ2-5-(8-quinolyl­­oxy­methyl)tetra­zolato-κ4N1,O,N5:N4]zinc(II)]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwangwei@gmail.com

(Received 14 April 2009; accepted 5 May 2009; online 14 May 2009)

In the title compound, [Zn(C11H8N5O)(N3)]n, the Zn atom is hexa­coordinated by five N atoms and one O atom in a distorted octa­hedral geometry. The chelating 5-(8-quinolyloxymeth­yl)tetra­zolate ligands are approximately planar, with a dihedral angle of 3.6 (2)° between the quinoline and tetra­zole planes. Adjacent Zn atoms are linked by two bridging azide ligands across a centre of inversion, and further coordination by one N atom of an adjacent tetra­zole unit forms two-dimensional frameworks in (100). C—H⋯N inter­actions exist between ligands in neighbouring layers.

Related literature

For the use of tetra­zole derivatives in coordination chemistry, see: Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]). For details of the synthetis, see: Luo & Ye (2008[Luo, H.-Z. & Ye, H.-Y. (2008). Acta Cryst. E64, o136.]). For related structures, see: Wang & Ye (2008[Wang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, m1006.]); Chen & Ye (2008[Chen, F. & Ye, H.-Y. (2008). Acta Cryst. E64, m1060.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H8N5O)(N3)]

  • Mr = 333.64

  • Monoclinic, P 21 /c

  • a = 10.352 (8) Å

  • b = 14.108 (9) Å

  • c = 8.626 (8) Å

  • β = 90.31 (2)°

  • V = 1259.8 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 294 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.714, Tmax = 0.821

  • 11540 measured reflections

  • 2714 independent reflections

  • 2261 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.183

  • S = 1.19

  • 2714 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N2i 0.93 2.49 3.411 (8) 170
C11—H11B⋯N8ii 0.97 2.54 3.252 (7) 130
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As shown in Fig. 1, the Zn atom adopts a distorted octahedral coordination geometry, coordinated by one N atom and one O atom from 8-hydroxyquinoline, two N atoms from two different tetrazole groups and two N atoms from two bridging azide groups. Thus, 8-[(1H-tetrazol-5-yl)methoxy]quinoline acts as a tetradentate linker while the azide groups bridge between Zn atoms to form centrosymmetric rhombic units. Two-dimensional frameworks are formed in the (100) planes, and C—H···N interactions exist between ligands in neighbouring planes.

Related literature top

For the use of tetrazole derivatives in coordination chemistry, see: Wang et al. (2005); Xiong et al. (2002). For details of the synthetis, see: Luo & Ye (2008). For related structures, see: Wang & Ye (2008); Chen & Ye (2008).

Experimental top

A mixture of quinolin-8-ol (1.45 g, 10 mmol), 1.38 g K2CO3, 30 ml acetone and 2-bromoacetonitrile (1.32 g,11 mmol) was refluxed overnight. After cooling, the resulting dark mixture was extracted with ether (30 ml) and the solvent was removed at reduced pressure to give a crude product. Recrystallization from ethanol gave the pure ligand 2-(quinolin-8-yloxy)acetonitrile as a white powder. A mixture of this ligand (0.037 g, 0.2 mmol), ZnCl2 (0.026 g, 0.2 mmol) and water (1 ml) was sealed in a glass tube and maintained at 383 K. Yellow crystals of the title compound suitable for X-ray analysis were obtained after 3 d.

Refinement top

H atoms were placed geometrically with C—H = 0.93 or 0.97 Å and allowed to ride during refinement with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted. Symmetry code: (A) 2 - x, 2 - y, -z.
[Figure 2] Fig. 2. Packing diagram viewed along the a axis.
Poly[(µ2-azido-κ2N1:N1)[µ2-5-(8-quinolyloxymethyl)tetrazolato- κ4N1,O,N5:N4]zinc(II)] top
Crystal data top
[Zn(C11H8N5O)(N3)]F(000) = 672
Mr = 333.64Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3428 reflections
a = 10.352 (8) Åθ = 2.0–27.3°
b = 14.108 (9) ŵ = 1.96 mm1
c = 8.626 (8) ÅT = 294 K
β = 90.31 (2)°Block, pale yellow
V = 1259.8 (17) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku SCXmini CCD
diffractometer
2714 independent reflections
Radiation source: fine-focus sealed tube2261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 27.3°, θmin = 2.0°
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
h = 1313
Tmin = 0.714, Tmax = 0.821k = 1818
11540 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0764P)2]
where P = (Fo2 + 2Fc2)/3
2714 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn(C11H8N5O)(N3)]V = 1259.8 (17) Å3
Mr = 333.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.352 (8) ŵ = 1.96 mm1
b = 14.108 (9) ÅT = 294 K
c = 8.626 (8) Å0.18 × 0.12 × 0.10 mm
β = 90.31 (2)°
Data collection top
Rigaku SCXmini CCD
diffractometer
2714 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
2261 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.821Rint = 0.059
11540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.19Δρmax = 0.63 e Å3
2714 reflectionsΔρmin = 0.71 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.95242 (4)0.90443 (3)0.09995 (5)0.0298 (2)
N50.7775 (3)0.9622 (3)0.1958 (4)0.0347 (8)
N11.0142 (3)0.7920 (3)0.0386 (4)0.0374 (8)
O10.7733 (3)0.8144 (2)0.0151 (4)0.0420 (8)
C90.6528 (4)0.8458 (3)0.0556 (5)0.0343 (9)
C80.5420 (4)0.9627 (4)0.2162 (6)0.0447 (11)
C70.7806 (5)1.0369 (3)0.2914 (5)0.0433 (11)
H7A0.86051.06290.31730.052*
C60.6587 (4)0.9259 (3)0.1565 (5)0.0326 (9)
C50.4240 (5)0.9206 (4)0.1716 (8)0.0595 (15)
H5A0.34690.94470.21000.071*
C40.5380 (4)0.8062 (3)0.0114 (6)0.0471 (11)
H4A0.53660.75530.05710.056*
C30.4212 (5)0.8432 (4)0.0705 (8)0.0621 (15)
H3A0.34270.81610.04210.075*
C20.5503 (5)1.0407 (4)0.3162 (6)0.0551 (14)
H2A0.47551.06740.35660.066*
C110.7891 (4)0.7426 (3)0.0998 (5)0.0340 (9)
H11A0.74930.76110.19730.041*
H11B0.75210.68290.06610.041*
N21.1345 (4)0.7624 (3)0.0749 (5)0.0488 (10)
C100.9352 (4)0.7353 (3)0.1149 (5)0.0319 (8)
N61.0849 (3)1.0102 (3)0.1218 (4)0.0351 (8)
N31.1247 (4)0.6921 (3)0.1722 (5)0.0504 (11)
C10.6690 (6)1.0780 (4)0.3545 (7)0.0538 (13)
H1A0.67531.12960.42120.065*
N71.1303 (4)1.0413 (3)0.2394 (4)0.0382 (8)
N81.1778 (6)1.0723 (4)0.3487 (6)0.0664 (14)
N40.9978 (3)0.6719 (3)0.1977 (4)0.0371 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0276 (3)0.0278 (3)0.0339 (3)0.00349 (16)0.0000 (2)0.00067 (16)
N50.0353 (18)0.0345 (18)0.0345 (18)0.0002 (15)0.0042 (15)0.0007 (15)
N10.0323 (18)0.039 (2)0.041 (2)0.0005 (15)0.0040 (16)0.0074 (16)
O10.0300 (15)0.0434 (17)0.0526 (19)0.0026 (13)0.0022 (14)0.0189 (14)
C90.029 (2)0.034 (2)0.040 (2)0.0011 (16)0.0015 (17)0.0019 (17)
C80.032 (2)0.049 (3)0.053 (3)0.011 (2)0.005 (2)0.006 (2)
C70.046 (3)0.041 (2)0.044 (2)0.004 (2)0.003 (2)0.011 (2)
C60.028 (2)0.036 (2)0.034 (2)0.0015 (17)0.0012 (17)0.0041 (17)
C50.030 (3)0.057 (3)0.092 (5)0.008 (2)0.007 (3)0.003 (3)
C40.036 (2)0.044 (3)0.061 (3)0.006 (2)0.005 (2)0.004 (2)
C30.030 (2)0.069 (4)0.087 (4)0.005 (2)0.005 (3)0.001 (3)
C20.044 (3)0.061 (3)0.061 (3)0.016 (2)0.015 (2)0.012 (3)
C110.038 (2)0.031 (2)0.033 (2)0.0013 (17)0.0002 (17)0.0049 (16)
N20.037 (2)0.050 (2)0.059 (3)0.0069 (18)0.0083 (19)0.011 (2)
C100.039 (2)0.0271 (19)0.0290 (18)0.0014 (16)0.0001 (16)0.0019 (15)
N60.0348 (18)0.0364 (19)0.0341 (18)0.0118 (15)0.0039 (15)0.0024 (14)
N30.036 (2)0.054 (3)0.061 (3)0.0023 (18)0.0036 (19)0.019 (2)
C10.055 (3)0.049 (3)0.057 (3)0.002 (2)0.012 (3)0.017 (3)
N70.041 (2)0.0360 (19)0.0371 (19)0.0044 (16)0.0013 (16)0.0009 (15)
N80.089 (4)0.062 (3)0.048 (3)0.012 (3)0.018 (3)0.013 (2)
N40.0325 (18)0.0384 (19)0.0403 (19)0.0055 (15)0.0001 (15)0.0099 (16)
Geometric parameters (Å, º) top
Zn1—N62.035 (4)C5—C31.398 (9)
Zn1—N12.088 (4)C5—H5A0.930
Zn1—N4i2.102 (4)C4—C31.415 (7)
Zn1—N52.155 (4)C4—H4A0.930
Zn1—N6ii2.291 (4)C3—H3A0.930
Zn1—O12.360 (4)C2—C11.376 (8)
N5—C71.338 (6)C2—H2A0.930
N5—C61.373 (6)C11—C101.522 (6)
N1—C101.318 (5)C11—H11A0.970
N1—N21.352 (5)C11—H11B0.970
O1—C91.371 (5)N2—N31.302 (6)
O1—C111.428 (5)C10—N41.318 (5)
C9—C41.366 (6)N6—N71.199 (5)
C9—C61.426 (6)N6—Zn1ii2.291 (4)
C8—C21.401 (7)N3—N41.361 (6)
C8—C51.410 (8)C1—H1A0.930
C8—C61.415 (6)N7—N81.147 (6)
C7—C11.405 (7)N4—Zn1iii2.102 (4)
C7—H7A0.930
N6—Zn1—N1113.67 (17)C8—C6—C9118.6 (4)
N6—Zn1—N4i98.71 (15)C3—C5—C8120.9 (5)
N1—Zn1—N4i91.07 (17)C3—C5—H5A119.5
N6—Zn1—N5104.72 (17)C8—C5—H5A119.5
N1—Zn1—N5140.15 (14)C9—C4—C3119.5 (5)
N4i—Zn1—N593.41 (15)C9—C4—H4A120.2
N6—Zn1—N6ii78.59 (15)C3—C4—H4A120.2
N1—Zn1—N6ii88.40 (17)C5—C3—C4119.9 (5)
N4i—Zn1—N6ii176.76 (13)C5—C3—H3A120.1
N5—Zn1—N6ii89.04 (15)C4—C3—H3A120.1
N6—Zn1—O1162.00 (14)C1—C2—C8120.0 (5)
N1—Zn1—O169.91 (14)C1—C2—H2A120.0
N4i—Zn1—O198.84 (14)C8—C2—H2A120.0
N5—Zn1—O170.27 (15)O1—C11—C10103.0 (3)
N6ii—Zn1—O183.98 (13)O1—C11—H11A111.2
C7—N5—C6117.7 (4)C10—C11—H11A111.2
C7—N5—Zn1121.1 (3)O1—C11—H11B111.2
C6—N5—Zn1121.1 (3)C10—C11—H11B111.2
C10—N1—N2105.5 (4)H11A—C11—H11B109.1
C10—N1—Zn1123.8 (3)N3—N2—N1108.4 (4)
N2—N1—Zn1130.7 (3)N4—C10—N1112.2 (4)
C9—O1—C11120.9 (3)N4—C10—C11125.7 (4)
C9—O1—Zn1117.5 (3)N1—C10—C11122.1 (4)
C11—O1—Zn1120.3 (2)N7—N6—Zn1127.4 (3)
C4—C9—O1126.0 (4)N7—N6—Zn1ii125.3 (3)
C4—C9—C6121.9 (4)Zn1—N6—Zn1ii101.41 (15)
O1—C9—C6112.0 (4)N2—N3—N4109.7 (4)
C2—C8—C5123.3 (5)C2—C1—C7119.0 (5)
C2—C8—C6117.6 (5)C2—C1—H1A120.5
C5—C8—C6119.1 (5)C7—C1—H1A120.5
N5—C7—C1123.1 (5)N8—N7—N6177.4 (5)
N5—C7—H7A118.4C10—N4—N3104.3 (4)
C1—C7—H7A118.4C10—N4—Zn1iii133.6 (3)
N5—C6—C8122.5 (4)N3—N4—Zn1iii117.0 (3)
N5—C6—C9118.8 (4)
N6—Zn1—N5—C719.6 (4)C5—C8—C6—C91.4 (7)
N1—Zn1—N5—C7176.1 (3)C4—C9—C6—N5179.8 (4)
N4i—Zn1—N5—C780.3 (4)O1—C9—C6—N51.8 (6)
N6ii—Zn1—N5—C797.6 (4)C4—C9—C6—C82.3 (7)
O1—Zn1—N5—C7178.5 (4)O1—C9—C6—C8176.1 (4)
N6—Zn1—N5—C6158.0 (3)C2—C8—C5—C3179.5 (5)
N1—Zn1—N5—C66.3 (4)C6—C8—C5—C30.4 (9)
N4i—Zn1—N5—C6102.1 (3)O1—C9—C4—C3176.1 (5)
N6ii—Zn1—N5—C680.0 (3)C6—C9—C4—C32.0 (7)
O1—Zn1—N5—C63.9 (3)C8—C5—C3—C40.1 (10)
N6—Zn1—N1—C10154.1 (3)C9—C4—C3—C50.9 (9)
N4i—Zn1—N1—C10106.0 (4)C5—C8—C2—C1180.0 (6)
N5—Zn1—N1—C109.3 (5)C6—C8—C2—C10.8 (8)
N6ii—Zn1—N1—C1077.3 (4)C9—O1—C11—C10176.3 (4)
O1—Zn1—N1—C106.9 (3)Zn1—O1—C11—C109.5 (4)
N6—Zn1—N1—N223.8 (5)C10—N1—N2—N31.5 (5)
N4i—Zn1—N1—N276.2 (4)Zn1—N1—N2—N3176.6 (3)
N5—Zn1—N1—N2172.8 (3)N2—N1—C10—N40.3 (5)
N6ii—Zn1—N1—N2100.6 (4)Zn1—N1—C10—N4178.0 (3)
O1—Zn1—N1—N2175.2 (4)N2—N1—C10—C11177.4 (4)
N6—Zn1—O1—C971.8 (5)Zn1—N1—C10—C114.3 (6)
N1—Zn1—O1—C9176.7 (3)O1—C11—C10—N4173.4 (4)
N4i—Zn1—O1—C995.4 (3)O1—C11—C10—N13.9 (5)
N5—Zn1—O1—C94.9 (3)N1—Zn1—N6—N7123.2 (4)
N6ii—Zn1—O1—C986.2 (3)N4i—Zn1—N6—N728.2 (4)
N6—Zn1—O1—C1195.5 (5)N5—Zn1—N6—N767.7 (4)
N1—Zn1—O1—C119.5 (3)N6ii—Zn1—N6—N7153.7 (5)
N4i—Zn1—O1—C1197.4 (3)O1—Zn1—N6—N7139.0 (4)
N5—Zn1—O1—C11172.1 (3)N1—Zn1—N6—Zn1ii83.13 (19)
N6ii—Zn1—O1—C1181.0 (3)N4i—Zn1—N6—Zn1ii178.17 (15)
C11—O1—C9—C49.5 (7)N5—Zn1—N6—Zn1ii85.94 (17)
Zn1—O1—C9—C4176.6 (4)N6ii—Zn1—N6—Zn1ii0.0
C11—O1—C9—C6172.2 (4)O1—Zn1—N6—Zn1ii14.7 (5)
Zn1—O1—C9—C65.1 (5)N1—N2—N3—N42.1 (6)
C6—N5—C7—C11.2 (7)C8—C2—C1—C70.3 (9)
Zn1—N5—C7—C1178.9 (4)N5—C7—C1—C20.5 (9)
C7—N5—C6—C81.8 (6)N1—C10—N4—N31.0 (5)
Zn1—N5—C6—C8179.4 (3)C11—C10—N4—N3178.5 (4)
C7—N5—C6—C9179.6 (4)N1—C10—N4—Zn1iii153.6 (3)
Zn1—N5—C6—C92.8 (5)C11—C10—N4—Zn1iii28.8 (7)
C2—C8—C6—N51.6 (7)N2—N3—N4—C101.9 (5)
C5—C8—C6—N5179.2 (5)N2—N3—N4—Zn1iii160.0 (3)
C2—C8—C6—C9179.4 (4)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+2, z; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2iv0.932.493.411 (8)170
C11—H11B···N8v0.972.543.252 (7)130
Symmetry codes: (iv) x1, y, z; (v) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C11H8N5O)(N3)]
Mr333.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.352 (8), 14.108 (9), 8.626 (8)
β (°) 90.31 (2)
V3)1259.8 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2005)
Tmin, Tmax0.714, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
11540, 2714, 2261
Rint0.059
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.183, 1.19
No. of reflections2714
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.71

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2i0.932.493.411 (8)169.8
C11—H11B···N8ii0.972.543.252 (7)129.9
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationChen, F. & Ye, H.-Y. (2008). Acta Cryst. E64, m1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuo, H.-Z. & Ye, H.-Y. (2008). Acta Cryst. E64, o136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, m1006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds