metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-2-(2-carboxyl­atophen­yl)acetato]-κ3O1,O1′:O2;κ3O2:O1,O1′-bis­­[aqua­(1,10-phenanthroline-κ2N,N′)nickel(II)]

aCollege of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education, Xiangtan University, Hunan 411105, People's Republic of China
*Correspondence e-mail: hnlth@xtu.edu.cn

(Received 20 April 2009; accepted 14 May 2009; online 23 May 2009)

The title compound, [Ni2(C9H6O4)2(C12H8N2)2(H2O)2], is isostructural with the ZnII analogue. Each NiII atom is coordinated in a distorted octa­hedral geometry by three O atoms from two homophthalate anions, one aqua O atom and two 1,10-phenanthroline N atoms. The two NiII atoms are linked by two bridging homophthalate dianions into a centrosymmetric dinuclear unit. The dinuclear units are linked into one-dimensional ladder-like chains along [100] by O—H⋯O hydrogen bonds between the coordinated water mol­ecules and one of the O atoms of the carboxyl­atomethyl group.

Related literature

For the ZnII analogue, see: He et al. (2006[He, J. R., Wang, Y. L., Bi, W. H. & Zhu, X. D. (2006). J. Mol. Struct. 787, 63-68.]); Sun (2006[Sun, J.-H. (2006). Acta Cryst. E62, m2799-m2801.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C9H6O4)2(C12H8N2)2(H2O)2]

  • Mr = 870.14

  • Monoclinic, P 21 /c

  • a = 8.819 (3) Å

  • b = 19.432 (6) Å

  • c = 12.898 (3) Å

  • β = 122.900 (17)°

  • V = 1855.8 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.20 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.618, Tmax = 0.806

  • 14201 measured reflections

  • 4232 independent reflections

  • 3900 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.05

  • 4232 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.84 1.87 2.653 (2) 155
O1W—H1WB⋯O4ii 0.83 1.88 2.7108 (17) 175
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is isostructural with its ZnII analogue (He et al., 2006; Sun, 2006). The asymmetric unit consitsts of one NiII atom, one 1,10-phenanthroline (phen) ligan, one homophthalate dianion (hpht2-) and a coordinated water molecule. The NiII atom is six-coordinated by two N atoms from phen and four O atoms, three from two hpht2- anions and one from coordinated H2O, in a distorted octahedron coordination geometry (Table 1). In the hpht2- ligand, the carboxylate group coordinates in a monodentate manner to NiII while the ethylcarboxylate group coordinates in a bidentate manner to another NiII atom. Two hpht2- ions link two NiII atoms to form a dinuclear complex across a centre of inversion. Such units are linked to form one-dimensional ladder-like chains along [100] by O—H···O hydrogen bonds from the coordinated water molecule to one of ethylcarboxyl O atoms. ππ interactions are formed between phen units in adjacent chains.

Related literature top

For the ZnII analogue, see: He et al. (2006); Sun (2006).

Experimental top

Homophthalic acid (H2hpht; 0.0275 g, 0.15 mmol), 1,10-phenanthroline (phen; 0.030 g, 0.15 mmol) and Ni(NO3)2.6H2O (0.044 g, 0.15 mmol) were put in 10 ml distilled H2O and the pH was adjusted to about 4.2 by addind dilute NaOH aqueous solution. The mixture was sealed in a 25 ml Teflon-lined autoclave and heated to 433 K for 3 days, then slowly cooled to room temperature. Red prism crystals were collected and washed with distilled water (yield: 51%)

Refinement top

H atoms bound to C atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and allowed to ride during refinement with Uiso(H) = 1.2Ueq(C). The H atoms on the water molecule were located from difference Fourier maps and allowed to ride in their as-found positions with constrained Uiso values.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular unit showing displacement ellipsoids drawn at the 30% probability level. H atoms are ommited. Symetry code: (A) -x, -y, 1 -z.
[Figure 2] Fig. 2. One-dimensional ladder-like chain formed along [100] by O—H···O hydrogen bonding (dashed lines). Part of the phen ligand and all H atoms that bonded to C atoms are omitted for clarity.
Bis[µ-2-(2-carboxylatophenyl)acetato]- κ3O1,O1':O2; κ3O2:O1,O1'-bis[aqua(1,10-phenanthroline- κ2N,N')nickel(II)] top
Crystal data top
[Ni2(C9H6O4)2(C12H8N2)2(H2O)2]F(000) = 896
Mr = 870.14Dx = 1.557 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5071 reflections
a = 8.819 (3) Åθ = 3.1–27.5°
b = 19.432 (6) ŵ = 1.08 mm1
c = 12.898 (3) ÅT = 173 K
β = 122.900 (17)°Prism, green
V = 1855.8 (10) Å30.45 × 0.40 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury70 CCD
diffractometer
4232 independent reflections
Radiation source: fine-focus sealed tube3900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Molecular Structure Corporation & Rigaku, 2001)
h = 1110
Tmin = 0.618, Tmax = 0.806k = 2525
14201 measured reflectionsl = 816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.7079P]
where P = (Fo2 + 2Fc2)/3
4232 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni2(C9H6O4)2(C12H8N2)2(H2O)2]V = 1855.8 (10) Å3
Mr = 870.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.819 (3) ŵ = 1.08 mm1
b = 19.432 (6) ÅT = 173 K
c = 12.898 (3) Å0.45 × 0.40 × 0.20 mm
β = 122.900 (17)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
4232 independent reflections
Absorption correction: multi-scan
(CrystalClear; Molecular Structure Corporation & Rigaku, 2001)
3900 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.806Rint = 0.021
14201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
4232 reflectionsΔρmin = 0.35 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.44081 (3)0.039291 (11)0.673702 (19)0.03024 (8)
O10.33605 (19)0.17448 (7)0.51356 (14)0.0502 (4)
N10.6408 (2)0.03318 (7)0.77780 (14)0.0345 (3)
C10.2231 (2)0.15639 (8)0.48860 (15)0.0314 (3)
O20.25662 (17)0.11526 (7)0.40350 (12)0.0435 (3)
N20.52689 (19)0.07298 (7)0.84877 (13)0.0340 (3)
C20.0352 (2)0.18683 (8)0.56453 (15)0.0304 (3)
O30.23654 (17)0.03212 (6)0.64245 (12)0.0364 (3)
C30.0064 (3)0.23714 (9)0.65075 (17)0.0400 (4)
H30.10370.25020.65840.048*
O40.31651 (16)0.02133 (6)0.50972 (11)0.0348 (3)
C40.1591 (3)0.26839 (10)0.72498 (19)0.0497 (5)
H40.17610.30150.78470.060*
C50.2996 (3)0.25140 (11)0.7122 (2)0.0534 (5)
H50.41330.27360.76130.064*
C60.2739 (3)0.20201 (11)0.6275 (2)0.0485 (5)
H60.37150.19080.61900.058*
C70.1087 (2)0.16760 (9)0.55342 (16)0.0340 (4)
C80.1050 (2)0.11111 (10)0.47180 (16)0.0389 (4)
H8A0.02040.09440.41690.047*
H8B0.14510.12990.41920.047*
C90.2252 (2)0.05161 (9)0.54613 (16)0.0306 (3)
C100.6981 (3)0.08452 (10)0.74036 (19)0.0448 (4)
H100.64410.09100.65420.054*
C110.8343 (3)0.12948 (11)0.8218 (2)0.0521 (5)
H110.87140.16590.79130.062*
C120.9141 (3)0.12072 (11)0.9459 (2)0.0483 (5)
H121.00710.15111.00240.058*
C130.8583 (2)0.06661 (10)0.99009 (17)0.0390 (4)
C140.9333 (3)0.05242 (11)1.11804 (19)0.0475 (5)
H141.02840.08061.17880.057*
C150.8722 (3)0.00016 (11)1.15414 (17)0.0472 (5)
H150.92280.00731.23970.057*
C160.7318 (3)0.04433 (9)1.06539 (17)0.0386 (4)
C170.6650 (3)0.10109 (11)1.09668 (18)0.0473 (5)
H170.71110.11121.18080.057*
C180.5337 (3)0.14141 (11)1.00544 (19)0.0496 (5)
H180.48770.17981.02560.060*
C190.4669 (3)0.12587 (10)0.88166 (18)0.0428 (4)
H190.37520.15430.81900.051*
C200.7199 (2)0.02413 (9)0.90086 (16)0.0323 (3)
C210.6584 (2)0.03289 (8)0.94044 (16)0.0320 (3)
O1W0.60875 (16)0.09246 (6)0.63816 (12)0.0362 (3)
H1WA0.54590.12310.58680.060*
H1WB0.62870.06860.59350.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02846 (13)0.03614 (13)0.02636 (13)0.00226 (8)0.01504 (10)0.00119 (8)
O10.0441 (8)0.0540 (8)0.0621 (9)0.0049 (6)0.0350 (7)0.0166 (7)
N10.0306 (7)0.0422 (8)0.0293 (7)0.0014 (6)0.0153 (6)0.0026 (6)
C10.0342 (8)0.0300 (7)0.0306 (8)0.0002 (6)0.0181 (7)0.0024 (6)
O20.0400 (7)0.0534 (8)0.0438 (8)0.0164 (6)0.0272 (6)0.0193 (6)
N20.0342 (7)0.0387 (7)0.0302 (7)0.0011 (6)0.0181 (6)0.0004 (6)
C20.0357 (8)0.0257 (7)0.0281 (8)0.0009 (6)0.0162 (7)0.0020 (6)
O30.0403 (7)0.0432 (6)0.0314 (6)0.0010 (5)0.0231 (6)0.0005 (5)
C30.0523 (11)0.0305 (8)0.0396 (10)0.0026 (7)0.0265 (9)0.0046 (7)
O40.0327 (6)0.0443 (6)0.0325 (6)0.0047 (5)0.0211 (5)0.0013 (5)
C40.0623 (13)0.0335 (9)0.0437 (11)0.0103 (9)0.0226 (10)0.0102 (8)
C50.0465 (11)0.0453 (10)0.0509 (12)0.0151 (9)0.0151 (10)0.0049 (9)
C60.0356 (10)0.0530 (11)0.0516 (12)0.0046 (8)0.0203 (9)0.0003 (10)
C70.0339 (8)0.0347 (8)0.0304 (8)0.0009 (6)0.0154 (7)0.0032 (7)
C80.0343 (9)0.0526 (10)0.0292 (9)0.0098 (8)0.0169 (8)0.0005 (8)
C90.0259 (8)0.0381 (8)0.0276 (8)0.0046 (6)0.0145 (7)0.0063 (7)
C100.0437 (10)0.0504 (10)0.0389 (10)0.0055 (8)0.0214 (9)0.0057 (8)
C110.0544 (12)0.0495 (11)0.0546 (13)0.0147 (9)0.0311 (11)0.0018 (10)
C120.0457 (11)0.0481 (11)0.0502 (12)0.0130 (9)0.0254 (10)0.0132 (9)
C130.0345 (9)0.0448 (9)0.0363 (10)0.0027 (7)0.0184 (8)0.0095 (8)
C140.0440 (11)0.0577 (12)0.0330 (10)0.0044 (9)0.0158 (9)0.0140 (9)
C150.0497 (11)0.0617 (12)0.0252 (9)0.0009 (9)0.0170 (8)0.0058 (8)
C160.0401 (10)0.0478 (10)0.0302 (9)0.0060 (8)0.0206 (8)0.0002 (7)
C170.0564 (12)0.0577 (12)0.0330 (10)0.0054 (10)0.0276 (10)0.0077 (9)
C180.0598 (13)0.0514 (11)0.0442 (11)0.0019 (9)0.0325 (10)0.0096 (9)
C190.0454 (10)0.0456 (10)0.0392 (10)0.0060 (8)0.0242 (9)0.0023 (8)
C200.0274 (8)0.0397 (8)0.0289 (8)0.0011 (6)0.0148 (7)0.0018 (7)
C210.0284 (8)0.0374 (8)0.0308 (9)0.0036 (6)0.0165 (7)0.0021 (7)
O1W0.0328 (6)0.0400 (6)0.0381 (7)0.0055 (5)0.0207 (6)0.0077 (5)
Geometric parameters (Å, º) top
Ni1—O2i2.0130 (13)C7—C81.509 (2)
Ni1—O1W2.0515 (13)C8—C91.508 (2)
Ni1—N22.0595 (15)C8—H8A0.990
Ni1—N12.0794 (16)C8—H8B0.990
Ni1—O42.1316 (13)C10—C111.393 (3)
Ni1—O32.1319 (14)C10—H100.950
O1—C11.252 (2)C11—C121.365 (3)
N1—C101.323 (2)C11—H110.950
N1—C201.354 (2)C12—C131.406 (3)
C1—O21.256 (2)C12—H120.950
C1—C21.514 (2)C13—C201.403 (2)
O2—Ni1i2.0130 (13)C13—C141.432 (3)
N2—C191.327 (2)C14—C151.346 (3)
N2—C211.364 (2)C14—H140.950
C2—C31.397 (2)C15—C161.432 (3)
C2—C71.403 (2)C15—H150.950
O3—C91.250 (2)C16—C211.390 (3)
C3—C41.377 (3)C16—C171.409 (3)
C3—H30.950C17—C181.363 (3)
O4—C91.275 (2)C17—H170.950
C4—C51.376 (3)C18—C191.402 (3)
C4—H40.950C18—H180.950
C5—C61.377 (3)C19—H190.950
C5—H50.950C20—C211.443 (2)
C6—C71.404 (3)O1W—H1WA0.837
C6—H60.950O1W—H1WB0.828
O2i—Ni1—O1W90.38 (6)C7—C8—H8A109.2
O2i—Ni1—N291.55 (6)C9—C8—H8B109.2
O1W—Ni1—N2101.77 (6)C7—C8—H8B109.2
O2i—Ni1—N1171.71 (6)H8A—C8—H8B107.9
O1W—Ni1—N191.33 (6)O3—C9—O4120.04 (16)
N2—Ni1—N180.16 (6)O3—C9—C8120.90 (15)
O2i—Ni1—O494.16 (6)O4—C9—C8119.06 (15)
O1W—Ni1—O495.81 (5)N1—C10—C11122.82 (19)
N2—Ni1—O4161.47 (5)N1—C10—H10118.6
N1—Ni1—O493.73 (6)C11—C10—H10118.6
O2i—Ni1—O390.68 (6)C12—C11—C10119.36 (19)
O1W—Ni1—O3157.53 (5)C12—C11—H11120.3
N2—Ni1—O3100.64 (5)C10—C11—H11120.3
N1—Ni1—O390.83 (6)C11—C12—C13119.84 (18)
O4—Ni1—O361.73 (5)C11—C12—H12120.1
C10—N1—C20118.06 (16)C13—C12—H12120.1
C10—N1—Ni1129.31 (13)C20—C13—C12116.59 (17)
C20—N1—Ni1112.64 (11)C20—C13—C14118.91 (18)
O1—C1—O2124.09 (16)C12—C13—C14124.50 (18)
O1—C1—C2117.91 (15)C15—C14—C13121.51 (18)
O2—C1—C2118.00 (15)C15—C14—H14119.2
C1—O2—Ni1i129.98 (11)C13—C14—H14119.2
C19—N2—C21117.66 (16)C14—C15—C16120.91 (18)
C19—N2—Ni1128.56 (13)C14—C15—H15119.5
C21—N2—Ni1113.73 (11)C16—C15—H15119.5
C3—C2—C7118.98 (16)C21—C16—C17116.94 (18)
C3—C2—C1116.77 (15)C21—C16—C15119.12 (17)
C7—C2—C1124.25 (15)C17—C16—C15123.92 (18)
C9—O3—Ni189.34 (10)C18—C17—C16119.59 (18)
C4—C3—C2121.85 (18)C18—C17—H17120.2
C4—C3—H3119.1C16—C17—H17120.2
C2—C3—H3119.1C17—C18—C19119.58 (19)
C9—O4—Ni188.68 (10)C17—C18—H18120.2
C5—C4—C3119.61 (19)C19—C18—H18120.2
C5—C4—H4120.2N2—C19—C18122.49 (18)
C3—C4—H4120.2N2—C19—H19118.8
C4—C5—C6119.43 (19)C18—C19—H19118.8
C4—C5—H5120.3N1—C20—C13123.33 (16)
C6—C5—H5120.3N1—C20—C21117.46 (15)
C5—C6—C7122.33 (19)C13—C20—C21119.21 (16)
C5—C6—H6118.8N2—C21—C16123.73 (16)
C7—C6—H6118.8N2—C21—C20115.96 (15)
C2—C7—C6117.74 (17)C16—C21—C20120.31 (16)
C2—C7—C8125.94 (16)Ni1—O1W—H1WA106.6
C6—C7—C8116.28 (16)Ni1—O1W—H1WB109.0
C9—C8—C7111.88 (14)H1WA—O1W—H1WB98.5
C9—C8—H8A109.2
O1W—Ni1—N1—C1076.39 (17)C2—C7—C8—C9112.08 (19)
N2—Ni1—N1—C10178.11 (18)C6—C7—C8—C965.6 (2)
O4—Ni1—N1—C1019.52 (17)Ni1—O3—C9—O44.62 (16)
O3—Ni1—N1—C1081.24 (17)Ni1—O3—C9—C8175.03 (14)
O1W—Ni1—N1—C20103.35 (12)Ni1—O4—C9—O34.62 (16)
N2—Ni1—N1—C201.63 (12)Ni1—O4—C9—C8175.04 (14)
O4—Ni1—N1—C20160.74 (12)C7—C8—C9—O338.4 (2)
O3—Ni1—N1—C2099.02 (12)C7—C8—C9—O4141.28 (16)
O1—C1—O2—Ni1i26.5 (3)C20—N1—C10—C110.5 (3)
C2—C1—O2—Ni1i154.47 (12)Ni1—N1—C10—C11179.76 (15)
O2i—Ni1—N2—C190.48 (16)N1—C10—C11—C120.3 (3)
O1W—Ni1—N2—C1991.19 (16)C10—C11—C12—C130.0 (3)
N1—Ni1—N2—C19179.50 (17)C11—C12—C13—C200.2 (3)
O4—Ni1—N2—C19107.5 (2)C11—C12—C13—C14179.5 (2)
O3—Ni1—N2—C1990.51 (16)C20—C13—C14—C151.0 (3)
O2i—Ni1—N2—C21177.86 (12)C12—C13—C14—C15179.2 (2)
O1W—Ni1—N2—C2191.43 (12)C13—C14—C15—C161.4 (3)
N1—Ni1—N2—C212.12 (11)C14—C15—C16—C210.1 (3)
O4—Ni1—N2—C2169.8 (2)C14—C15—C16—C17178.2 (2)
O3—Ni1—N2—C2186.87 (12)C21—C16—C17—C180.2 (3)
O1—C1—C2—C34.9 (2)C15—C16—C17—C18178.54 (19)
O2—C1—C2—C3174.24 (16)C16—C17—C18—C190.0 (3)
O1—C1—C2—C7175.03 (16)C21—N2—C19—C180.1 (3)
O2—C1—C2—C75.9 (2)Ni1—N2—C19—C18177.39 (15)
O2i—Ni1—O3—C997.07 (10)C17—C18—C19—N20.2 (3)
O1W—Ni1—O3—C94.43 (19)C10—N1—C20—C130.4 (3)
N2—Ni1—O3—C9171.22 (10)Ni1—N1—C20—C13179.87 (13)
N1—Ni1—O3—C991.08 (11)C10—N1—C20—C21178.83 (16)
O4—Ni1—O3—C92.71 (9)Ni1—N1—C20—C210.94 (19)
C7—C2—C3—C40.0 (3)C12—C13—C20—N10.0 (3)
C1—C2—C3—C4179.96 (16)C14—C13—C20—N1179.76 (17)
O2i—Ni1—O4—C991.19 (10)C12—C13—C20—C21179.15 (16)
O1W—Ni1—O4—C9178.00 (10)C14—C13—C20—C210.6 (3)
N2—Ni1—O4—C916.4 (2)C19—N2—C21—C160.2 (3)
N1—Ni1—O4—C986.27 (10)Ni1—N2—C21—C16177.54 (13)
O3—Ni1—O4—C92.66 (9)C19—N2—C21—C20179.95 (15)
C2—C3—C4—C51.9 (3)Ni1—N2—C21—C202.26 (18)
C3—C4—C5—C61.7 (3)C17—C16—C21—N20.3 (3)
C4—C5—C6—C70.4 (3)C15—C16—C21—N2178.70 (17)
C3—C2—C7—C62.1 (2)C17—C16—C21—C20179.90 (16)
C1—C2—C7—C6178.01 (16)C15—C16—C21—C201.5 (3)
C3—C2—C7—C8175.58 (16)N1—C20—C21—N20.9 (2)
C1—C2—C7—C84.3 (3)C13—C20—C21—N2178.35 (15)
C5—C6—C7—C22.3 (3)N1—C20—C21—C16178.93 (16)
C5—C6—C7—C8175.61 (19)C13—C20—C21—C161.8 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.841.872.653 (2)155
O1W—H1WB···O4ii0.831.882.7108 (17)175
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C9H6O4)2(C12H8N2)2(H2O)2]
Mr870.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.819 (3), 19.432 (6), 12.898 (3)
β (°) 122.900 (17)
V3)1855.8 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.45 × 0.40 × 0.20
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Molecular Structure Corporation & Rigaku, 2001)
Tmin, Tmax0.618, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
14201, 4232, 3900
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.05
No. of reflections4232
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.35

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.841.872.653 (2)155.3
O1W—H1WB···O4ii0.831.882.7108 (17)175.0
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
 

References

First citationHe, J. R., Wang, Y. L., Bi, W. H. & Zhu, X. D. (2006). J. Mol. Struct. 787, 63–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J.-H. (2006). Acta Cryst. E62, m2799–m2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds