organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(tri­fluoro­meth­yl)benzoic acid

aDepartment of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS, Canada B3H 3C3
*Correspondence e-mail: jason.masuda@smu.ca

(Received 24 April 2009; accepted 1 May 2009; online 7 May 2009)

The title compound, C9H4F6O2, contains two mol­ecules in the asymmetric unit, one of which exhibits disorder in both of its trifluoro­methyl groups. The dihedral angles between the benzene ring and the carboxyl group are 71.5 (2) and 99.3 (2)° in the two independent mol­ecules. The compound exhibits a catemeric structure resulting from inter­molecular O—H⋯O hydrogen bonding between the carboxyl groups.

Related literature

There is only one example in the literature of a crystallographically characterized benzoic acid with trifluoro­methyl groups in the ortho position, namely 2-trifluoro­methyl-3-pyrrole benzoic acid (see Faigl et al., 1999[Faigl, F., Fogassy, K., Szűcs, E., Kovács, K., Keserű, G. M., Harmat, V., Böcski, Z. & Tőke, L. (1999). Tetrahedron, 55, 7881-7892.]). For a recent example of crystal engineering to promote the formation of dimeric or catemeric structures in benzoic acids, see: Moorthy et al. (2002[Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530-6531.]). For synthesis details, see: Dmowski & Piasecka-Macieiewska (1998[Dmowski, W. & Piasecka-Macieiewska, K. (1998). Tetrahedron, 54, 6781-6792.]).

[Scheme 1]

Experimental

Crystal data
  • C9H4F6O2

  • Mr = 258.12

  • Monoclinic, P 21 /c

  • a = 10.873 (2) Å

  • b = 15.755 (3) Å

  • c = 11.561 (2) Å

  • β = 94.961 (2)°

  • V = 1973.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.39 × 0.31 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 0.951

  • 12904 measured reflections

  • 3438 independent reflections

  • 2889 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.02

  • 3438 reflections

  • 331 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O4i 0.82 1.82 2.6340 (19) 169
O3—H3A⋯O1 0.82 1.88 2.6951 (18) 176
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title molecule crystallizes in a catemer motif, a relatively rare form compared to the typical dimeric motif exhibited by benzoic acids resulting from intermolecular hydrogen bonding between the carboxylic acid groups (Moorthy et al., 2002). The sterically bulky o-CF3 groups result in the carboxylic acid fragments being twisted with respect to the aryl ring. This results in dihedral angles between the aryl ring and carboxylic acid fragments of C7—C2—C1—O1 = 71.5 (2)° and C12—C11—C10—O4 = 99.3 (2)°.

Related literature top

There is only one example in the literature of a crystallographically characterized benzoic acid with trifluoromethyl groups in the ortho position, namely 2-trifluoromethyl-3-pyrrole benzoic acid (see Faigl et al., 1999). For a recent example of crystal engineering to promote the formation of dimeric or catemeric structures in benzoic acids, see: Moorthy et al. (2002). For synthesis details, see: Dmowski & Piasecka-Macieiewska (1998).

Experimental top

The title compound was prepared following the literature methods (Dmowski & Piasecka-Macieiewska, 1998) with a slight modification. The compound crystallized from the oily reaction mixture that remained after acidification of the potassium benzoate salt with concentrated HCl, extraction of the organic components with toluene, drying of the organic fraction with magnesium sulfate and concentration by rotary evaporation.

Refinement top

H atoms were placed in geometrically idealized positions with C—H = 0.93 Å and O—H = 0.82 Å and constrained to ride on the parent atom with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O). The trifluoromethyl groups belonging to C17 and C18 were modeled with a two-site disorder of the F atoms with refined site occupancy factors of 0.569 (5):0.431 (5) and 0.689 (5):0.311 (5), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two molecules in the asymmetric unit with displacement ellipsoids shown at 50% probability for non-H atoms. For the disordered CF3 groups, both disorder components are shown.
[Figure 2] Fig. 2. Ball and stick representation featuring the catemeric structure formed through O—H···O hydrogen bonding. H atoms not involved in H-bonding and the CF3 groups have been omitted for clarity.
2,6-Bis(trifluoromethyl)benzoic acid top
Crystal data top
C9H4F6O2F(000) = 1024
Mr = 258.12Dx = 1.738 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6970 reflections
a = 10.873 (2) Åθ = 2.3–28.0°
b = 15.755 (3) ŵ = 0.20 mm1
c = 11.561 (2) ÅT = 296 K
β = 94.961 (2)°Block, colorless
V = 1973.0 (6) Å30.39 × 0.31 × 0.26 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3438 independent reflections
Radiation source: fine-focus sealed tube2889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.834, Tmax = 0.951k = 1818
12904 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2 + 0.5224P]
where P = (Fo2 + 2Fc2)/3
3438 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H4F6O2V = 1973.0 (6) Å3
Mr = 258.12Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.873 (2) ŵ = 0.20 mm1
b = 15.755 (3) ÅT = 296 K
c = 11.561 (2) Å0.39 × 0.31 × 0.26 mm
β = 94.961 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2889 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.951Rint = 0.021
12904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3438 reflectionsΔρmin = 0.23 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.25273 (16)0.14562 (11)0.00186 (14)0.0532 (4)
C20.34011 (15)0.08652 (10)0.07069 (14)0.0490 (4)
C30.43893 (16)0.11687 (12)0.14433 (16)0.0564 (4)
C40.51596 (17)0.06028 (14)0.20807 (17)0.0666 (5)
H4A0.58070.08080.25810.080*
C50.49740 (19)0.02557 (14)0.19783 (18)0.0689 (5)
H5A0.54980.06290.24050.083*
C60.40178 (18)0.05640 (12)0.12489 (16)0.0614 (5)
H6A0.39000.11470.11750.074*
C70.32257 (15)0.00131 (10)0.06209 (14)0.0508 (4)
C80.46743 (19)0.20978 (14)0.1562 (2)0.0756 (6)
F10.5244 (2)0.22865 (11)0.25885 (18)0.1361 (7)
F20.53907 (15)0.23619 (9)0.07602 (19)0.1232 (7)
F30.36850 (12)0.25931 (8)0.14440 (14)0.0893 (4)
C90.21830 (18)0.03876 (12)0.01534 (17)0.0632 (5)
F40.11518 (12)0.04286 (10)0.03733 (13)0.0975 (4)
F50.19338 (14)0.00483 (8)0.11254 (11)0.0911 (4)
F60.24344 (13)0.11707 (8)0.04877 (12)0.0906 (4)
C100.10257 (17)0.15284 (11)0.30263 (15)0.0545 (4)
C110.07034 (16)0.13002 (10)0.42282 (14)0.0514 (4)
C120.04150 (17)0.15569 (11)0.46310 (15)0.0561 (4)
C130.0643 (2)0.14110 (13)0.57757 (18)0.0711 (5)
H13A0.13800.15930.60450.085*
C140.0220 (2)0.09977 (15)0.65140 (18)0.0801 (6)
H14A0.00660.09060.72830.096*
C150.1301 (2)0.07212 (14)0.61252 (17)0.0730 (6)
H15A0.18690.04300.66260.088*
C160.15558 (18)0.08709 (12)0.49899 (16)0.0603 (5)
O10.14736 (11)0.15753 (8)0.02411 (10)0.0606 (3)
O20.30404 (14)0.18036 (9)0.08444 (12)0.0751 (4)
H2A0.25490.21290.11920.113*
O30.05615 (13)0.10397 (9)0.22093 (11)0.0684 (4)
H3A0.08180.11820.15920.103*
O40.16936 (19)0.21110 (11)0.28586 (13)0.0999 (6)
C170.13950 (10)0.19782 (8)0.38373 (10)0.0726 (5)
F7A0.09321 (12)0.25255 (8)0.31618 (10)0.1010 (13)0.569 (5)
F8A0.19164 (10)0.13805 (10)0.31178 (10)0.0901 (11)0.569 (5)
F9A0.22489 (10)0.23045 (8)0.43893 (12)0.139 (2)0.569 (5)
F7B0.17175 (10)0.16347 (9)0.28614 (11)0.144 (3)0.431 (5)
F9B0.10986 (11)0.28028 (10)0.35381 (9)0.1164 (19)0.431 (5)
F8B0.24254 (11)0.21614 (8)0.43317 (12)0.0970 (19)0.431 (5)
C180.27540 (10)0.05569 (8)0.46034 (11)0.0751 (6)
F10A0.26369 (10)0.01894 (8)0.35789 (13)0.0877 (11)0.689 (5)
F11A0.36230 (10)0.11205 (10)0.46284 (11)0.1163 (14)0.689 (5)
F12A0.32020 (9)0.01015 (9)0.52898 (13)0.1142 (11)0.689 (5)
F10B0.33236 (9)0.12165 (10)0.40107 (11)0.108 (2)0.311 (5)
F12B0.35672 (10)0.03614 (8)0.54011 (13)0.125 (3)0.311 (5)
F11B0.26173 (10)0.00490 (9)0.37781 (12)0.154 (5)0.311 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0618 (10)0.0542 (9)0.0442 (9)0.0104 (7)0.0085 (7)0.0040 (7)
C20.0497 (8)0.0552 (9)0.0428 (8)0.0073 (7)0.0077 (7)0.0041 (7)
C30.0508 (9)0.0623 (10)0.0566 (10)0.0011 (8)0.0089 (8)0.0018 (8)
C40.0507 (10)0.0864 (14)0.0607 (11)0.0064 (9)0.0062 (8)0.0020 (10)
C50.0631 (11)0.0776 (13)0.0641 (12)0.0199 (10)0.0061 (9)0.0105 (10)
C60.0689 (11)0.0567 (10)0.0582 (11)0.0113 (8)0.0025 (9)0.0077 (8)
C70.0535 (9)0.0551 (9)0.0436 (9)0.0056 (7)0.0044 (7)0.0031 (7)
C80.0608 (11)0.0702 (12)0.0965 (16)0.0044 (10)0.0112 (11)0.0113 (11)
F10.1536 (16)0.0987 (11)0.1447 (15)0.0163 (10)0.0518 (13)0.0361 (10)
F20.1085 (11)0.0773 (9)0.1956 (19)0.0172 (8)0.0813 (12)0.0035 (10)
F30.0828 (8)0.0627 (7)0.1245 (12)0.0037 (6)0.0221 (8)0.0124 (7)
C90.0672 (11)0.0597 (11)0.0615 (11)0.0030 (9)0.0013 (9)0.0003 (9)
F40.0628 (7)0.1270 (12)0.1024 (10)0.0164 (7)0.0050 (7)0.0162 (9)
F50.1201 (11)0.0832 (8)0.0628 (7)0.0013 (7)0.0338 (7)0.0035 (6)
F60.1079 (10)0.0632 (7)0.0972 (10)0.0013 (6)0.0118 (8)0.0186 (6)
C100.0609 (10)0.0574 (10)0.0454 (9)0.0107 (8)0.0059 (7)0.0075 (7)
C110.0640 (10)0.0495 (9)0.0408 (8)0.0136 (7)0.0046 (7)0.0079 (7)
C120.0679 (11)0.0526 (9)0.0486 (9)0.0112 (8)0.0089 (8)0.0117 (7)
C130.0839 (13)0.0731 (12)0.0591 (12)0.0128 (10)0.0231 (10)0.0126 (10)
C140.1122 (18)0.0860 (15)0.0440 (10)0.0135 (13)0.0171 (11)0.0010 (10)
C150.0927 (15)0.0781 (13)0.0473 (10)0.0043 (11)0.0009 (10)0.0031 (9)
C160.0698 (11)0.0606 (10)0.0499 (10)0.0094 (9)0.0017 (8)0.0042 (8)
O10.0575 (7)0.0753 (8)0.0490 (7)0.0156 (6)0.0041 (5)0.0077 (6)
O20.0858 (9)0.0756 (9)0.0677 (8)0.0301 (7)0.0294 (7)0.0303 (7)
O30.0850 (9)0.0783 (9)0.0420 (6)0.0259 (7)0.0064 (6)0.0103 (6)
O40.1505 (15)0.0963 (11)0.0575 (9)0.0706 (11)0.0357 (9)0.0223 (8)
C170.0723 (13)0.0783 (14)0.0675 (13)0.0023 (11)0.0087 (10)0.0092 (11)
F7A0.115 (2)0.088 (2)0.099 (2)0.0095 (16)0.0008 (17)0.0347 (18)
F8A0.0718 (17)0.0977 (19)0.095 (2)0.0026 (14)0.0251 (14)0.0169 (16)
F9A0.153 (4)0.144 (3)0.121 (4)0.087 (3)0.022 (3)0.030 (3)
F7B0.156 (5)0.187 (5)0.079 (3)0.090 (4)0.040 (3)0.064 (3)
F9B0.100 (3)0.097 (3)0.151 (4)0.009 (2)0.005 (3)0.039 (3)
F8B0.055 (2)0.146 (4)0.092 (4)0.006 (3)0.018 (2)0.007 (3)
C180.0736 (13)0.0807 (15)0.0699 (14)0.0014 (11)0.0001 (11)0.0030 (11)
F10A0.082 (2)0.116 (2)0.0655 (15)0.0210 (16)0.0119 (13)0.0152 (16)
F11A0.0730 (14)0.115 (2)0.161 (3)0.0229 (14)0.0114 (17)0.033 (2)
F12A0.1041 (18)0.130 (2)0.107 (2)0.0381 (17)0.0002 (15)0.0232 (16)
F10B0.076 (3)0.109 (4)0.146 (6)0.006 (3)0.039 (3)0.029 (4)
F12B0.084 (3)0.204 (9)0.081 (4)0.039 (5)0.020 (3)0.023 (4)
F11B0.099 (7)0.145 (7)0.222 (11)0.022 (5)0.038 (6)0.109 (7)
Geometric parameters (Å, º) top
C1—O11.210 (2)C11—C121.399 (3)
C1—O21.305 (2)C12—C131.387 (3)
C1—C21.507 (2)C12—C171.500 (2)
C2—C31.396 (2)C13—C141.376 (3)
C2—C71.399 (2)C13—H13A0.930
C3—C41.390 (3)C14—C151.365 (3)
C3—C81.500 (3)C14—H14A0.930
C4—C51.371 (3)C15—C161.385 (3)
C4—H4A0.930C15—H15A0.930
C5—C61.370 (3)C16—C181.498 (2)
C5—H5A0.930O2—H2A0.820
C6—C71.383 (2)O3—H3A0.820
C6—H6A0.930C17—F7B1.2729 (11)
C7—C91.503 (3)C17—F9A1.2791 (11)
C8—F11.324 (3)C17—F7A1.2941 (11)
C8—F31.326 (3)C17—F8B1.3326 (12)
C8—F21.328 (3)C17—F8A1.3485 (12)
C9—F41.323 (2)C17—F9B1.3895 (12)
C9—F51.325 (2)C18—F11B1.2443 (10)
C9—F61.328 (2)C18—F12B1.2593 (11)
C10—O41.197 (2)C18—F11A1.2952 (11)
C10—O31.287 (2)C18—F10A1.3146 (11)
C10—C111.506 (2)C18—F12A1.3697 (11)
C11—C161.397 (3)C18—F10B1.4165 (12)
O1—C1—O2124.93 (16)C13—C12—C17118.76 (16)
O1—C1—C2123.28 (15)C11—C12—C17121.09 (14)
O2—C1—C2111.78 (14)C14—C13—C12120.1 (2)
C3—C2—C7118.36 (15)C14—C13—H13A119.9
C3—C2—C1121.80 (15)C12—C13—H13A119.9
C7—C2—C1119.84 (15)C15—C14—C13120.45 (19)
C4—C3—C2120.00 (17)C15—C14—H14A119.8
C4—C3—C8117.85 (18)C13—C14—H14A119.8
C2—C3—C8122.14 (17)C14—C15—C16120.4 (2)
C5—C4—C3120.63 (18)C14—C15—H15A119.8
C5—C4—H4A119.7C16—C15—H15A119.8
C3—C4—H4A119.7C15—C16—C11120.24 (19)
C6—C5—C4120.08 (17)C15—C16—C18118.50 (17)
C6—C5—H5A120.0C11—C16—C18121.25 (15)
C4—C5—H5A120.0C1—O2—H2A109.5
C5—C6—C7120.36 (18)C10—O3—H3A109.5
C5—C6—H6A119.8F9A—C17—F7A111.7
C7—C6—H6A119.8F7B—C17—F8B107.2
C6—C7—C2120.55 (16)F9A—C17—F8A107.7
C6—C7—C9118.00 (16)F7A—C17—F8A104.9
C2—C7—C9121.45 (15)F7B—C17—F9B103.2
F1—C8—F3105.80 (19)F8B—C17—F9B97.2
F1—C8—F2107.3 (2)F7B—C17—C12118.73 (8)
F3—C8—F2105.3 (2)F9A—C17—C12112.38 (8)
F1—C8—C3112.2 (2)F7A—C17—C12111.79 (8)
F3—C8—C3113.92 (17)F8B—C17—C12114.37 (8)
F2—C8—C3111.77 (18)F8A—C17—C12107.87 (8)
F4—C9—F5107.23 (17)F9B—C17—C12113.47 (8)
F4—C9—F6107.01 (17)F11B—C18—F12B115.7
F5—C9—F6105.48 (16)F11A—C18—F10A109.6
F4—C9—C7111.76 (16)F11A—C18—F12A106.5
F5—C9—C7112.95 (16)F10A—C18—F12A101.0
F6—C9—C7111.98 (16)F11B—C18—F10B97.4
O4—C10—O3123.01 (17)F12B—C18—F10B103.0
O4—C10—C11121.71 (15)F11B—C18—C16113.07 (8)
O3—C10—C11115.25 (15)F12B—C18—C16115.85 (8)
C16—C11—C12118.60 (16)F11A—C18—C16114.75 (8)
C16—C11—C10120.19 (16)F10A—C18—C16113.29 (8)
C12—C11—C10121.10 (16)F12A—C18—C16110.63 (9)
C13—C12—C11120.14 (18)F10B—C18—C16109.27 (9)
C7—C2—C1—O171.5 (2)C12—C11—C10—O499.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.821.822.6340 (19)169
O3—H3A···O10.821.882.6951 (18)176
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H4F6O2
Mr258.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.873 (2), 15.755 (3), 11.561 (2)
β (°) 94.961 (2)
V3)1973.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.39 × 0.31 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.834, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
12904, 3438, 2889
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.02
No. of reflections3438
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.821.822.6340 (19)169.1
O3—H3A···O10.821.882.6951 (18)175.6
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Saint Mary's University for providing funding in the form of initial operating funds (JDM) and student funding through the Summer Employment Experience Program (JMT).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDmowski, W. & Piasecka-Macieiewska, K. (1998). Tetrahedron, 54, 6781–6792.  Web of Science CrossRef CAS Google Scholar
First citationFaigl, F., Fogassy, K., Szűcs, E., Kovács, K., Keserű, G. M., Harmat, V., Böcski, Z. & Tőke, L. (1999). Tetrahedron, 55, 7881–7892.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds