organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new crystal phase of N,N,N′,N′-tetra­phenyl-1,1′-bi­phenyl-4,4′-di­amine

aDepartment of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan, and bRigaku Co., Akishima, Tokyo 196-8666, Japan
*Correspondence e-mail: toyonari@c.s.osakafu-u.ac.jp

(Received 10 March 2009; accepted 1 May 2009; online 7 May 2009)

The complete molecule of the title compound, C36H28N2, is generated by a crystallographic centre of inversion. The biphenyl unit is forced by symmetry to be essentially flat (r.m.s. deviation = 0.008 Å); the dihedral angles between it and the two terminal phenyl rings are 69.39 (5) and 59.53 (5)°.

Related literature

For the electronic properties of semiconductors based triaryl­amines, see, for example: Kennedy et al. (2002[Kennedy, A. R., Smith, W. E., Tackley, D. R., David, W. I. F., Shankland, K., Brown, D. & Teat, S. J. (2002). J. Mater. Chem. 12, 168-172.]); Shirota (2000[Shirota, Y. (2000). J. Mater. Chem. 10, 1-25.], 2005[Shirota, Y. (2005). J. Mater. Chem. 15, 75-93.]); Song et al. (2006[Song, Y., Di, C., Yang, X., Li, S., Xu, W., Liu, Y., Yang, L., Shuai, Z., Zhang, D. & Zhu, D. (2006). J. Am. Chem. Soc. 128, 15940-15941.]). For the preparation of triaryl­amine, see: Hartwig (1999[Hartwig, J. F. (1999). Pure Appl. Chem. 71, 1417-1423.]). For related structures, see: Kennedy et al. (2002[Kennedy, A. R., Smith, W. E., Tackley, D. R., David, W. I. F., Shankland, K., Brown, D. & Teat, S. J. (2002). J. Mater. Chem. 12, 168-172.]); Low et al. (2004[Low, P. J., Paterson, M. A. J., Puschmann, H., Goeta, A. E., Howard, J. A. K., Lambert, C., Cherryman, J. C., Tackley, D. R., Leeming, S. & Brown, B. (2004). Chem. Eur. J. 10, 83-91.]); Zhang et al. (2004[Zhang, Z., Burkholder, E. & Zubieta, J. (2004). Acta Cryst. C60, o452-o454.], 2006[Zhang, H.-G., Yu, W.-T., Yan, S.-N., Cheng, C. & Tao, X.-T. (2006). Acta Cryst. E62, o5236-o5238.]).

[Scheme 1]

Experimental

Crystal data
  • C36H28N2

  • Mr = 488.63

  • Monoclinic, P 21 /n

  • a = 9.6846 (2) Å

  • b = 14.2661 (4) Å

  • c = 9.7946 (2) Å

  • β = 107.0521 (15)°

  • V = 1293.75 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 173 K

  • 0.15 × 0.14 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.885, Tmax = 0.941

  • 14609 measured reflections

  • 2362 independent reflections

  • 1956 reflections with F2 > 2σ(F2)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.119

  • S = 1.07

  • 2362 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Triarylamine-based organic semiconductors have been intensively investigated as hole transport materials for electro-optic devices (Kennedy et al., 2002; Shirota, 2000; Shirota, 2005). Recently, the organic field-effect transistor (OFET) based on a cyclic triphenylamine has been reported, which shows the relatively good mobility and high on/off ratio (Song et al., 2006). The title compound, N,N,N',N'-tetraphenyl-1,1'-biphenyl-4,4'-diamine (I), has been synthesized by coupling of two triphenylamine molecules using a copper catalyst (Ullman coupling) and also using methanesulfonic acid as catalyst in the yield of 10% (Zhang et al., 2006). We have synthesized compound (I) from the coupling of 4,4'-dibromobiphenyl and diphenylamine using a palladium catalyst in the yield of 71% (Hartwig, 1999). The crystal structure of compound (I) has been reported (Zhang et al., 2006), where the biphenyl part of the molecule is highly twisted with a dihedral angle of 32.9 (4)°. Herein, we report another crystal phase of compound (I).

The molecule (I) possesses a inversion center, thus the biphenyl moiety of the molecule shows a completely flat conformation with an average deviation of 0.0079Å (Fig. 1). The other fused rings make 69.39 (5)° and 59.53 (5)° dihedral angles with this flat biphenyl moiety. The N atom displays an almost trigonal geometry with slight distortion of the N—C bond lengths and C—N—C bond angles. The angle sums around the N atom is ca 360°. The molecular geometry of (I) is quite different from the previously reported one (Zhang et al., 2006), and also different from those of the related biphenyl-diamine compounds (Kennedy et al., 2002, Low et al., 2004; Zhang et al., 2004). The molecular packing pattern in the present crystal is also different from the reported one (Zhang et al., 2006), and a herringbone-like packing motif governed by the van der Waals interactions is observed (Fig. 2).

Related literature top

For the electronic properties of semiconductors based on the triarylamines, see, for example: Kennedy et al. (2002); Shirota (2000, 2005); Song et al. (2006). For the preparation of triarylamine, see: Hartwig (1999). For related structures, see: Kennedy et al. (2002); Low et al. (2004); Zhang et al. (2006); Zhang et al. (2004).

Experimental top

A suspension of 4,4'-dibromobiphenyl (3.1 g, 10 mmol), diphenylamine (3.9 g, 21 mmol) and sodium t-butoxide (2.3 g, 24 mmol) in xylene (20 ml) was refluxed in the presence of palladium(II) acetate (4.4 mg, 0.020 mmol) and triphenylphosphine (42 mg, 0.016 mmol) for 5 h under an argon atmosphere. After removing the solvent in vacuum, the residue was separated by column chromatography on silica gel using benzene as eluent to afford the title compound in the yield of 71%. The single crystals of (I) suitable for the X-ray crystallographic analysis were obtained by recrystallization from benzene/hexane as colorless blocks.

Refinement top

All of the H atoms were positioned geometrically with C–H of 0.95Å and were constrained in a riding motion on their parent carbon atoms with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. [Symmetry code: (i) 1 - x, 1 - y, -z.]
[Figure 2] Fig. 2. A packing diagram for (I), viewed along the b-axis. H atoms have been omitted.
N,N,N',N'-tetraphenyl-1,1'-biphenyl-4,4'-diamine top
Crystal data top
C36H28N2F(000) = 516.00
Mr = 488.63Dx = 1.254 Mg m3
Monoclinic, P21/nMelting point: 400 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54187 Å
a = 9.6846 (2) ÅCell parameters from 9402 reflections
b = 14.2661 (4) Åθ = 4.7–68.2°
c = 9.7946 (2) ŵ = 0.56 mm1
β = 107.0521 (15)°T = 173 K
V = 1293.75 (5) Å3Block, colorless
Z = 20.15 × 0.14 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1956 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.045
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.885, Tmax = 0.941k = 1716
14609 measured reflectionsl = 1111
2362 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.1003P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.22 e Å3
2362 reflectionsΔρmin = 0.15 e Å3
174 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0044 (7)
Crystal data top
C36H28N2V = 1293.75 (5) Å3
Mr = 488.63Z = 2
Monoclinic, P21/nCu Kα radiation
a = 9.6846 (2) ŵ = 0.56 mm1
b = 14.2661 (4) ÅT = 173 K
c = 9.7946 (2) Å0.15 × 0.14 × 0.11 mm
β = 107.0521 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2362 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1956 reflections with F2 > 2σ(F2)
Tmin = 0.885, Tmax = 0.941Rint = 0.045
14609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2362 reflectionsΔρmin = 0.15 e Å3
174 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61552 (11)0.35882 (8)0.48812 (11)0.0350 (3)
C10.75255 (14)0.38277 (9)0.58558 (13)0.0322 (3)
C20.76352 (16)0.41058 (10)0.72442 (14)0.0407 (3)
C30.89748 (16)0.43064 (10)0.81905 (15)0.0460 (4)
C41.02051 (16)0.42680 (10)0.77599 (16)0.0435 (3)
C51.00977 (15)0.40187 (10)0.63705 (16)0.0419 (3)
C60.87666 (15)0.37871 (9)0.54238 (15)0.0375 (3)
C70.52193 (14)0.29751 (9)0.53277 (13)0.0312 (3)
C80.57988 (15)0.22955 (9)0.63602 (13)0.0364 (3)
C90.49026 (15)0.17243 (10)0.68654 (14)0.0408 (3)
C100.34163 (15)0.17989 (10)0.63263 (14)0.0406 (3)
C110.28345 (15)0.24546 (10)0.52752 (14)0.0370 (3)
C120.37225 (14)0.30446 (9)0.47834 (13)0.0329 (3)
C130.57704 (13)0.39859 (9)0.34918 (13)0.0303 (3)
C140.61838 (14)0.48974 (9)0.33017 (13)0.0333 (3)
C150.58792 (14)0.52884 (9)0.19522 (13)0.0322 (3)
C160.51417 (12)0.47929 (9)0.07275 (12)0.0286 (3)
C170.46985 (14)0.38858 (9)0.09424 (13)0.0338 (3)
C180.50099 (14)0.34835 (9)0.22831 (13)0.0344 (3)
H20.67900.41580.75440.049*
H30.90450.44730.91480.055*
H41.11190.44120.84130.052*
H51.09390.40060.60600.050*
H60.87060.36000.44770.045*
H80.68170.22240.67190.044*
H90.53110.12770.75890.049*
H100.28040.14050.66740.049*
H110.18160.25010.48860.044*
H120.33080.34980.40720.039*
H140.66840.52580.41110.040*
H150.61810.59120.18570.039*
H170.41640.35330.01380.041*
H180.47040.28610.23820.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0320 (6)0.0420 (6)0.0280 (5)0.0078 (4)0.0041 (4)0.0056 (4)
C10.0307 (7)0.0328 (7)0.0304 (6)0.0044 (5)0.0049 (5)0.0059 (4)
C20.0374 (7)0.0514 (8)0.0347 (7)0.0094 (6)0.0125 (6)0.0006 (6)
C30.0506 (9)0.0517 (9)0.0323 (7)0.0171 (7)0.0066 (6)0.0038 (6)
C40.0349 (7)0.0412 (8)0.0461 (8)0.0087 (6)0.0010 (6)0.0025 (6)
C50.0311 (7)0.0400 (7)0.0550 (9)0.0004 (5)0.0132 (6)0.0030 (6)
C60.0370 (8)0.0406 (7)0.0343 (7)0.0005 (5)0.0097 (5)0.0019 (5)
C70.0328 (7)0.0333 (7)0.0272 (6)0.0060 (5)0.0083 (5)0.0003 (4)
C80.0328 (7)0.0389 (7)0.0342 (7)0.0043 (5)0.0047 (5)0.0034 (5)
C90.0468 (8)0.0386 (7)0.0339 (7)0.0088 (6)0.0069 (6)0.0057 (5)
C100.0450 (8)0.0430 (8)0.0365 (7)0.0138 (6)0.0162 (6)0.0024 (5)
C110.0315 (7)0.0451 (8)0.0354 (7)0.0055 (5)0.0112 (5)0.0064 (5)
C120.0342 (7)0.0346 (7)0.0295 (6)0.0010 (5)0.0086 (5)0.0015 (5)
C130.0280 (6)0.0353 (7)0.0273 (6)0.0001 (5)0.0078 (5)0.0038 (4)
C140.0353 (7)0.0330 (7)0.0290 (6)0.0020 (5)0.0052 (5)0.0014 (5)
C150.0345 (7)0.0287 (6)0.0323 (6)0.0013 (5)0.0081 (5)0.0014 (4)
C160.0231 (6)0.0322 (6)0.0307 (6)0.0034 (4)0.0081 (5)0.0015 (4)
C170.0346 (7)0.0367 (7)0.0284 (6)0.0051 (5)0.0064 (5)0.0012 (5)
C180.0375 (7)0.0324 (7)0.0328 (6)0.0060 (5)0.0096 (5)0.0021 (5)
Geometric parameters (Å, º) top
N1—C11.4304 (14)C15—C161.3951 (16)
N1—C71.4178 (18)C16—C16i1.4920 (16)
N1—C131.4196 (16)C16—C171.3986 (18)
C1—C21.3904 (19)C17—C181.3829 (17)
C1—C61.388 (2)C2—H20.950
C2—C31.3852 (18)C3—H30.950
C3—C41.377 (2)C4—H40.950
C4—C51.381 (2)C5—H50.950
C5—C61.3892 (17)C6—H60.950
C7—C81.3946 (17)C8—H80.950
C7—C121.3936 (17)C9—H90.950
C8—C91.384 (2)C10—H100.950
C9—C101.3843 (19)C11—H110.950
C10—C111.3828 (18)C12—H120.950
C11—C121.387 (2)C14—H140.950
C13—C141.3891 (18)C15—H150.950
C13—C181.3951 (16)C17—H170.950
C14—C151.3844 (17)C18—H180.950
C4···C9ii3.528 (2)C14···H5vi3.095
C12···C14iii3.4707 (18)C14···H10viii3.150
N1···H14iii3.582C14···H12iii3.370
C1···H18iv3.262C15···H2iii2.881
C2···H18iv3.427C15···H4vi3.061
C3···H3v3.252C15···H5vi3.283
C3···H9ii3.045C15···H10viii3.111
C3···H18iv3.319C16···H2iii3.235
C4···H3v3.412C16···H10viii3.004
C4···H9ii2.912C17···H8ix3.482
C4···H10ii3.562C17···H10viii2.910
C4···H15vi3.418C17···H11viii3.230
C4···H18iv3.081C18···H8ix3.144
C5···H9ii3.436C18···H10viii2.941
C5···H11vii3.315C18···H11viii3.599
C5···H14vi3.445H2···H11iv3.291
C5···H15vi3.513H2···H14iii3.382
C5···H18iv2.922H2···H15iii3.102
C6···H5vi3.515H3···H3v2.581
C6···H9viii3.520H3···H4v2.914
C6···H10viii3.525H3···H9ii3.245
C6···H17iv3.353H3···H9iv3.404
C6···H18iv3.001H3···H10iv3.298
C7···H14iii3.263H4···H9ii3.027
C8···H3ix3.433H4···H10ii3.038
C8···H11iv3.314H4···H15vi2.743
C8···H12iv3.234H4···H17xiii3.194
C9···H3x3.597H4···H18iv3.549
C9···H3ix3.065H5···H6vi3.488
C9···H4x3.432H5···H9viii3.298
C9···H6xi3.137H5···H11vii2.687
C9···H11iv3.192H5···H12vii3.493
C9···H12iv3.387H5···H14vi2.580
C10···H3ix2.996H5···H15vi2.935
C10···H4x3.435H5···H18iv3.332
C10···H6xi3.069H6···H9viii2.748
C11···H2ix3.447H6···H10viii2.626
C11···H3ix3.303H6···H11vii3.314
C11···H5xii3.112H6···H17iv3.116
C11···H8ix3.361H6···H18iv3.429
C11···H9ix3.521H8···H11iv3.127
C11···H14iii3.326H8···H12iv2.551
C11···H15iii3.557H8···H17iv3.286
C12···H5xii3.562H8···H18iv2.682
C12···H8ix3.052H9···H11iv2.881
C12···H9ix3.508H9···H12iv2.857
C12···H14iii2.728H10···H17xi3.404
C12···H15iii3.587H10···H18xi3.437
C13···H2iii3.566H11···H14iii3.529
C13···H10viii3.068H11···H17xi3.034
C14···H2iii3.066H12···H14iii2.511
C1—N1—C7119.56 (10)C1—C2—H2120.0
C1—N1—C13118.40 (10)C3—C2—H2120.0
C7—N1—C13122.03 (9)C2—C3—H3119.6
N1—C1—C2120.71 (13)C4—C3—H3119.6
N1—C1—C6120.24 (11)C3—C4—H4120.3
C2—C1—C6119.05 (11)C5—C4—H4120.3
C1—C2—C3120.09 (14)C4—C5—H5119.8
C2—C3—C4120.78 (13)C6—C5—H5119.8
C3—C4—C5119.37 (12)C1—C6—H6119.9
C4—C5—C6120.41 (15)C5—C6—H6119.9
C1—C6—C5120.25 (13)C7—C8—H8119.7
N1—C7—C8119.66 (11)C9—C8—H8119.8
N1—C7—C12121.70 (10)C8—C9—H9119.7
C8—C7—C12118.63 (12)C10—C9—H9119.7
C7—C8—C9120.50 (12)C9—C10—H10120.4
C8—C9—C10120.63 (12)C11—C10—H10120.4
C9—C10—C11119.15 (14)C10—C11—H11119.7
C10—C11—C12120.69 (12)C12—C11—H11119.7
C7—C12—C11120.36 (11)C7—C12—H12119.8
N1—C13—C14119.85 (10)C11—C12—H12119.8
N1—C13—C18122.21 (11)C13—C14—H14119.5
C14—C13—C18117.93 (11)C15—C14—H14119.5
C13—C14—C15121.07 (10)C14—C15—H15119.0
C14—C15—C16121.92 (11)C16—C15—H15119.0
C15—C16—C16i121.67 (11)C16—C17—H17118.8
C15—C16—C17116.22 (10)C18—C17—H17118.8
C16i—C16—C17122.11 (10)C13—C18—H18119.8
C16—C17—C18122.40 (10)C17—C18—H18119.8
C13—C18—C17120.43 (11)
C(1)—N(1)—C(7)—C(8)29.27 (18)N(1)—C(7)—C(8)—C(9)176.51 (12)
C(1)—N(1)—C(7)—C(12)149.31 (12)N(1)—C(7)—C(12)—C(11)177.89 (12)
C(7)—N(1)—C(1)—C(2)47.50 (17)C(8)—C(7)—C(12)—C(11)0.71 (19)
C(7)—N(1)—C(1)—C(6)132.65 (13)C(12)—C(7)—C(8)—C(9)2.12 (19)
C(1)—N(1)—C(13)—C(14)35.87 (18)C(7)—C(8)—C(9)—C(10)1.9 (2)
C(1)—N(1)—C(13)—C(18)142.58 (13)C(8)—C(9)—C(10)—C(11)0.1 (2)
C(13)—N(1)—C(1)—C(2)131.78 (13)C(9)—C(10)—C(11)—C(12)1.3 (2)
C(13)—N(1)—C(1)—C(6)48.07 (17)C(10)—C(11)—C(12)—C(7)1.0 (2)
C(7)—N(1)—C(13)—C(14)143.40 (13)N(1)—C(13)—C(14)—C(15)177.10 (12)
C(7)—N(1)—C(13)—C(18)38.16 (19)N(1)—C(13)—C(18)—C(17)177.79 (12)
C(13)—N(1)—C(7)—C(8)151.47 (12)C(14)—C(13)—C(18)—C(17)0.7 (2)
C(13)—N(1)—C(7)—C(12)29.94 (18)C(18)—C(13)—C(14)—C(15)1.4 (2)
N(1)—C(1)—C(2)—C(3)177.90 (12)C(13)—C(14)—C(15)—C(16)0.4 (2)
N(1)—C(1)—C(6)—C(5)179.93 (12)C(14)—C(15)—C(16)—C(17)1.39 (19)
C(2)—C(1)—C(6)—C(5)0.21 (19)C(14)—C(15)—C(16)—C(16)i178.00 (12)
C(6)—C(1)—C(2)—C(3)2.2 (2)C(15)—C(16)—C(16)i—C(17)i0.65 (19)
C(1)—C(2)—C(3)—C(4)2.4 (2)C(15)—C(16)—C(17)—C(18)2.1 (2)
C(2)—C(3)—C(4)—C(5)0.5 (2)C(16)i—C(16)—C(17)—C(18)177.25 (12)
C(3)—C(4)—C(5)—C(6)1.5 (2)C(17)—C(16)—C(16)i—C(15)i0.65 (19)
C(4)—C(5)—C(6)—C(1)1.7 (2)C(16)—C(17)—C(18)—C(13)1.1 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+2, y+1, z+2; (vi) x+2, y+1, z+1; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z1/2; (ix) x1/2, y+1/2, z1/2; (x) x+3/2, y1/2, z+3/2; (xi) x1/2, y+1/2, z+1/2; (xii) x1, y, z; (xiii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC36H28N2
Mr488.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.6846 (2), 14.2661 (4), 9.7946 (2)
β (°) 107.0521 (15)
V3)1293.75 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.15 × 0.14 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.885, 0.941
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
14609, 2362, 1956
Rint0.045
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.07
No. of reflections2362
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 19350073) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationHartwig, J. F. (1999). Pure Appl. Chem. 71, 1417–1423.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKennedy, A. R., Smith, W. E., Tackley, D. R., David, W. I. F., Shankland, K., Brown, D. & Teat, S. J. (2002). J. Mater. Chem. 12, 168–172.  Web of Science CSD CrossRef CAS Google Scholar
First citationLow, P. J., Paterson, M. A. J., Puschmann, H., Goeta, A. E., Howard, J. A. K., Lambert, C., Cherryman, J. C., Tackley, D. R., Leeming, S. & Brown, B. (2004). Chem. Eur. J. 10, 83–91.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirota, Y. (2000). J. Mater. Chem. 10, 1–25.  Web of Science CrossRef CAS Google Scholar
First citationShirota, Y. (2005). J. Mater. Chem. 15, 75–93.  Web of Science CrossRef CAS Google Scholar
First citationSong, Y., Di, C., Yang, X., Li, S., Xu, W., Liu, Y., Yang, L., Shuai, Z., Zhang, D. & Zhu, D. (2006). J. Am. Chem. Soc. 128, 15940–15941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Z., Burkholder, E. & Zubieta, J. (2004). Acta Cryst. C60, o452–o454.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-G., Yu, W.-T., Yan, S.-N., Cheng, C. & Tao, X.-T. (2006). Acta Cryst. E62, o5236–o5238.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds