metal-organic compounds
Hexaaquacadmium(II) dipicrate monohydrate
aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, and cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk
In the structure of the title compound, [Cd(H2O)6](C6H2N3O7)2·H2O, the CdII ion is located on an inversion center and is coordinated by six water molecules in an octahedral geometry. The picrate anions have no coordination interactions with the CdII ion. The three nitro groups are twisted away from the attached benzene ring, making dihedral angles of 17.89 (3), 27.94 (4) and 13.65 (3)°. There are numerous O—H⋯O hydrogen bonds in the involving coordinated and uncoordinated water molecules.
Related literature
Picric acid forms salts with many organic and metallic cations, see: Gartland et al. (1974). Crystal structures have been reported for NH4 and K (Maartmann-Moe, 1969), thallium picrate (Herbstein et al., 1977), manganese picrate (Liu et al., 2008) and zinc picrate (Natarajan et al., 2008). For bond angles in picric acid, see: Yang et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809015049/bq2135sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809015049/bq2135Isup2.hkl
Colorless needle-shaped single crystals of the title compound were grown from a saturated aqueous solution containing picric acid and cadmium chloride in a 1:1 stoichiometric ratio.
O-bound H atoms were located in a difference Fourier map and their positional parameters were refined, with Uiso(H) = 1.5Ueq(O). C-bound H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 Å, and Uiso = 1.2Ueq(C).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. |
[Cd(H2O)6](C6H2N3O7)2·H2O | F(000) = 1432 |
Mr = 712.75 | Dx = 1.937 Mg m−3 |
Orthorhombic, Pbnb | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2bc 2ab | Cell parameters from 25 reflections |
a = 7.2823 (2) Å | θ = 3–25° |
b = 13.2249 (4) Å | µ = 1.01 mm−1 |
c = 25.3798 (8) Å | T = 293 K |
V = 2444.27 (13) Å3 | Block, colourless |
Z = 4 | 0.18 × 0.15 × 0.11 mm |
Nonius MACH-3 diffractometer | 1513 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.010 |
Graphite monochromator | θmax = 25.0°, θmin = 2.9° |
ω–2θ scans | h = 0→8 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→15 |
Tmin = 0.834, Tmax = 0.895 | l = −1→30 |
2247 measured reflections | 2 standard reflections every 60 min |
2142 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0314P)2 + 3.7212P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
2142 reflections | Δρmax = 0.54 e Å−3 |
220 parameters | Δρmin = −0.38 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0029 (2) |
[Cd(H2O)6](C6H2N3O7)2·H2O | V = 2444.27 (13) Å3 |
Mr = 712.75 | Z = 4 |
Orthorhombic, Pbnb | Mo Kα radiation |
a = 7.2823 (2) Å | µ = 1.01 mm−1 |
b = 13.2249 (4) Å | T = 293 K |
c = 25.3798 (8) Å | 0.18 × 0.15 × 0.11 mm |
Nonius MACH-3 diffractometer | 1513 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.010 |
Tmin = 0.834, Tmax = 0.895 | 2 standard reflections every 60 min |
2247 measured reflections | intensity decay: none |
2142 independent reflections |
R[F2 > 2σ(F2)] = 0.027 | 2 restraints |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | Δρmax = 0.54 e Å−3 |
2142 reflections | Δρmin = −0.38 e Å−3 |
220 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd | 0.0000 | 0.5000 | 0.0000 | 0.03236 (15) | |
O11 | 0.1978 (4) | 0.5718 (3) | 0.05990 (11) | 0.0393 (7) | |
O1 | 0.4465 (5) | 0.2509 (2) | 0.11321 (10) | 0.0581 (9) | |
O5 | 0.6784 (4) | 0.6893 (2) | 0.18800 (10) | 0.0430 (7) | |
O7 | 0.4862 (4) | 0.4516 (2) | 0.10554 (9) | 0.0390 (7) | |
O2 | 0.3391 (4) | 0.1969 (2) | 0.18648 (10) | 0.0435 (7) | |
O6 | 0.5121 (4) | 0.6525 (2) | 0.12019 (9) | 0.0415 (7) | |
O4 | 0.5772 (5) | 0.5100 (2) | 0.34801 (10) | 0.0463 (7) | |
N3 | 0.5092 (4) | 0.4393 (2) | 0.32448 (11) | 0.0297 (7) | |
O8 | −0.0269 (6) | 0.3512 (2) | 0.04266 (13) | 0.0609 (10) | |
O9 | 0.2500 (5) | 0.4420 (3) | −0.03995 (13) | 0.0554 (9) | |
O3 | 0.4428 (4) | 0.3650 (2) | 0.34660 (10) | 0.0430 (7) | |
O10 | 0.5209 (5) | 0.3302 (2) | 0.00923 (13) | 0.0457 (8) | |
N2 | 0.5770 (4) | 0.6320 (2) | 0.16356 (11) | 0.0301 (7) | |
C4 | 0.5398 (5) | 0.5320 (3) | 0.24176 (14) | 0.0280 (8) | |
H4 | 0.5694 | 0.5898 | 0.2608 | 0.034* | |
N1 | 0.4123 (5) | 0.2622 (2) | 0.15992 (11) | 0.0336 (7) | |
C2 | 0.4606 (5) | 0.3554 (3) | 0.23989 (13) | 0.0290 (8) | |
H2 | 0.4336 | 0.2958 | 0.2577 | 0.035* | |
C3 | 0.5024 (5) | 0.4423 (3) | 0.26750 (12) | 0.0279 (8) | |
C6 | 0.4911 (5) | 0.4481 (3) | 0.15474 (13) | 0.0272 (7) | |
C1 | 0.4592 (5) | 0.3581 (3) | 0.18566 (13) | 0.0286 (8) | |
C5 | 0.5328 (5) | 0.5350 (3) | 0.18776 (13) | 0.0258 (8) | |
H8W | 0.517 (8) | 0.337 (5) | 0.043 (3) | 0.09 (2)* | |
H1W | 0.172 (8) | 0.607 (4) | 0.081 (2) | 0.07 (2)* | |
H3W | −0.009 (7) | 0.350 (4) | 0.074 (2) | 0.065 (16)* | |
H5W | 0.302 (7) | 0.475 (4) | −0.0643 (19) | 0.063 (16)* | |
H2W | 0.276 (8) | 0.536 (4) | 0.0788 (19) | 0.067 (17)* | |
H6W | 0.317 (5) | 0.402 (3) | −0.0255 (15) | 0.045 (13)* | |
H9W | 0.612 (8) | 0.349 (4) | −0.0004 (19) | 0.06 (2)* | |
H4W | −0.007 (7) | 0.297 (2) | 0.0302 (19) | 0.065 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd | 0.0329 (2) | 0.0278 (2) | 0.0363 (2) | 0.00038 (17) | −0.00396 (18) | −0.00312 (16) |
O11 | 0.0433 (17) | 0.0432 (17) | 0.0314 (14) | 0.0014 (14) | −0.0075 (13) | −0.0079 (14) |
O1 | 0.109 (3) | 0.0353 (16) | 0.0295 (15) | −0.0106 (17) | 0.0057 (16) | −0.0099 (12) |
O5 | 0.0509 (18) | 0.0310 (15) | 0.0470 (15) | −0.0088 (13) | −0.0122 (14) | 0.0002 (13) |
O7 | 0.0649 (19) | 0.0298 (13) | 0.0221 (12) | 0.0003 (13) | −0.0042 (13) | −0.0018 (11) |
O2 | 0.0614 (19) | 0.0269 (15) | 0.0423 (15) | −0.0055 (14) | −0.0051 (14) | 0.0004 (12) |
O6 | 0.066 (2) | 0.0324 (14) | 0.0260 (13) | −0.0018 (14) | −0.0045 (13) | 0.0039 (11) |
O4 | 0.0609 (18) | 0.0510 (18) | 0.0270 (13) | −0.0151 (16) | −0.0020 (13) | −0.0087 (13) |
N3 | 0.0297 (16) | 0.0375 (18) | 0.0220 (14) | −0.0003 (15) | −0.0011 (14) | −0.0031 (13) |
O8 | 0.118 (3) | 0.0330 (16) | 0.0312 (16) | 0.004 (2) | −0.0078 (19) | 0.0040 (13) |
O9 | 0.058 (2) | 0.063 (2) | 0.0451 (17) | 0.0244 (19) | 0.0174 (17) | 0.0129 (17) |
O3 | 0.0582 (18) | 0.0428 (16) | 0.0281 (13) | −0.0079 (15) | −0.0016 (13) | 0.0068 (12) |
O10 | 0.051 (2) | 0.0435 (17) | 0.0426 (19) | −0.0074 (16) | 0.0016 (16) | −0.0024 (14) |
N2 | 0.0346 (16) | 0.0271 (16) | 0.0286 (15) | 0.0041 (14) | 0.0019 (14) | −0.0006 (13) |
C4 | 0.026 (2) | 0.0300 (17) | 0.0278 (18) | 0.0014 (15) | −0.0025 (14) | −0.0070 (15) |
N1 | 0.0434 (19) | 0.0268 (16) | 0.0306 (16) | 0.0010 (15) | −0.0037 (15) | −0.0016 (14) |
C2 | 0.033 (2) | 0.0288 (17) | 0.0255 (18) | 0.0020 (16) | −0.0023 (14) | 0.0026 (14) |
C3 | 0.0279 (17) | 0.0334 (19) | 0.0225 (16) | 0.0027 (16) | −0.0020 (16) | −0.0017 (14) |
C6 | 0.0287 (18) | 0.0272 (17) | 0.0256 (17) | 0.0017 (15) | −0.0010 (16) | −0.0022 (14) |
C1 | 0.035 (2) | 0.0238 (17) | 0.0268 (17) | 0.0012 (16) | −0.0043 (15) | −0.0030 (14) |
C5 | 0.028 (2) | 0.0239 (16) | 0.0256 (16) | 0.0022 (14) | −0.0013 (14) | 0.0004 (14) |
Cd—O9i | 2.221 (3) | O8—H3W | 0.79 (5) |
Cd—O9 | 2.221 (3) | O8—H4W | 0.80 (2) |
Cd—O8i | 2.255 (3) | O9—H5W | 0.85 (5) |
Cd—O8 | 2.255 (3) | O9—H6W | 0.81 (4) |
Cd—O11 | 2.299 (3) | O10—H8W | 0.87 (7) |
Cd—O11i | 2.299 (3) | O10—H9W | 0.75 (6) |
O11—H1W | 0.73 (5) | N2—C5 | 1.459 (5) |
O11—H2W | 0.88 (6) | C4—C5 | 1.372 (5) |
O1—N1 | 1.220 (4) | C4—C3 | 1.382 (5) |
O5—N2 | 1.226 (4) | C4—H4 | 0.9300 |
O7—C6 | 1.250 (4) | N1—C1 | 1.467 (4) |
O2—N1 | 1.219 (4) | C2—C1 | 1.377 (5) |
O6—N2 | 1.228 (4) | C2—C3 | 1.380 (5) |
O4—N3 | 1.216 (4) | C2—H2 | 0.9300 |
N3—O3 | 1.231 (4) | C6—C1 | 1.444 (5) |
N3—C3 | 1.447 (4) | C6—C5 | 1.454 (5) |
O9i—Cd—O9 | 180.00 (15) | H5W—O9—H6W | 113 (5) |
O9i—Cd—O8i | 89.37 (14) | H8W—O10—H9W | 108 (5) |
O9—Cd—O8i | 90.63 (14) | O5—N2—O6 | 123.3 (3) |
O9i—Cd—O8 | 90.63 (14) | O5—N2—C5 | 117.6 (3) |
O9—Cd—O8 | 89.37 (14) | O6—N2—C5 | 119.1 (3) |
O8i—Cd—O8 | 180.00 (16) | C5—C4—C3 | 119.3 (3) |
O9i—Cd—O11 | 93.97 (13) | C5—C4—H4 | 120.4 |
O9—Cd—O11 | 86.03 (13) | C3—C4—H4 | 120.4 |
O8i—Cd—O11 | 84.41 (13) | O2—N1—O1 | 122.7 (3) |
O8—Cd—O11 | 95.59 (13) | O2—N1—C1 | 117.9 (3) |
O9i—Cd—O11i | 86.03 (13) | O1—N1—C1 | 119.4 (3) |
O9—Cd—O11i | 93.97 (13) | C1—C2—C3 | 119.2 (3) |
O8i—Cd—O11i | 95.59 (13) | C1—C2—H2 | 120.4 |
O8—Cd—O11i | 84.41 (13) | C3—C2—H2 | 120.4 |
O11—Cd—O11i | 180.00 (11) | C2—C3—C4 | 121.2 (3) |
Cd—O11—H1W | 126 (5) | C2—C3—N3 | 119.5 (3) |
Cd—O11—H2W | 123 (3) | C4—C3—N3 | 119.3 (3) |
H1W—O11—H2W | 96 (5) | O7—C6—C1 | 124.7 (3) |
O4—N3—O3 | 123.4 (3) | O7—C6—C5 | 123.5 (3) |
O4—N3—C3 | 118.9 (3) | C1—C6—C5 | 111.8 (3) |
O3—N3—C3 | 117.7 (3) | C2—C1—C6 | 124.3 (3) |
Cd—O8—H3W | 118 (4) | C2—C1—N1 | 115.1 (3) |
Cd—O8—H4W | 126 (4) | C6—C1—N1 | 120.5 (3) |
H3W—O8—H4W | 110 (5) | C4—C5—C6 | 124.1 (3) |
Cd—O9—H5W | 122 (3) | C4—C5—N2 | 115.9 (3) |
Cd—O9—H6W | 121 (3) | C6—C5—N2 | 119.9 (3) |
C1—C2—C3—C4 | 1.1 (6) | O2—N1—C1—C2 | 16.5 (5) |
C1—C2—C3—N3 | −178.2 (3) | O1—N1—C1—C2 | −163.9 (4) |
C5—C4—C3—C2 | 0.8 (6) | O2—N1—C1—C6 | −160.4 (3) |
C5—C4—C3—N3 | −179.8 (3) | O1—N1—C1—C6 | 19.2 (5) |
O4—N3—C3—C2 | 167.0 (3) | C3—C4—C5—C6 | −1.1 (5) |
O3—N3—C3—C2 | −14.0 (5) | C3—C4—C5—N2 | −179.0 (3) |
O4—N3—C3—C4 | −12.3 (5) | O7—C6—C5—C4 | −179.6 (4) |
O3—N3—C3—C4 | 166.7 (3) | C1—C6—C5—C4 | −0.4 (5) |
C3—C2—C1—C6 | −2.9 (6) | O7—C6—C5—N2 | −1.8 (5) |
C3—C2—C1—N1 | −179.7 (3) | C1—C6—C5—N2 | 177.4 (3) |
O7—C6—C1—C2 | −178.4 (4) | O5—N2—C5—C4 | 26.6 (5) |
C5—C6—C1—C2 | 2.5 (5) | O6—N2—C5—C4 | −153.5 (3) |
O7—C6—C1—N1 | −1.8 (6) | O5—N2—C5—C6 | −151.4 (3) |
C5—C6—C1—N1 | 179.1 (3) | O6—N2—C5—C6 | 28.5 (5) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1W···O1ii | 0.73 (5) | 2.25 (6) | 2.923 (4) | 155 (6) |
O8—H3W···O3iii | 0.79 (5) | 2.09 (5) | 2.882 (4) | 172 (5) |
O8—H4W···O10iv | 0.80 (2) | 1.96 (2) | 2.758 (5) | 171 (5) |
O9—H5W···O6v | 0.85 (5) | 2.59 (5) | 2.951 (4) | 107 (4) |
O9—H5W···O7v | 0.85 (5) | 2.10 (5) | 2.905 (5) | 159 (5) |
O10—H9W···O11v | 0.75 (6) | 2.30 (5) | 2.993 (5) | 154 (5) |
C4—H4···O2vi | 0.93 | 2.57 | 3.195 (4) | 125 |
O11—H2W···O6 | 0.88 (6) | 2.54 (5) | 2.953 (4) | 109 (4) |
O11—H2W···O7 | 0.88 (6) | 2.01 (6) | 2.877 (4) | 166 (5) |
O9—H6W···O10 | 0.81 (4) | 1.97 (2) | 2.763 (5) | 167 (5) |
O10—H8W···O1 | 0.87 (7) | 2.18 (7) | 2.891 (4) | 140 (5) |
O10—H8W···O7 | 0.87 (7) | 2.20 (7) | 2.936 (4) | 142 (6) |
Symmetry codes: (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, y, −z+1/2; (iv) x−1/2, −y+1/2, −z; (v) −x+1, −y+1, −z; (vi) x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(H2O)6](C6H2N3O7)2·H2O |
Mr | 712.75 |
Crystal system, space group | Orthorhombic, Pbnb |
Temperature (K) | 293 |
a, b, c (Å) | 7.2823 (2), 13.2249 (4), 25.3798 (8) |
V (Å3) | 2444.27 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.01 |
Crystal size (mm) | 0.18 × 0.15 × 0.11 |
Data collection | |
Diffractometer | Nonius MACH-3 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.834, 0.895 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2247, 2142, 1513 |
Rint | 0.010 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.084, 1.16 |
No. of reflections | 2142 |
No. of parameters | 220 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.54, −0.38 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1W···O1i | 0.73 (5) | 2.25 (6) | 2.923 (4) | 155 (6) |
O8—H3W···O3ii | 0.79 (5) | 2.09 (5) | 2.882 (4) | 172 (5) |
O8—H4W···O10iii | 0.80 (2) | 1.96 (2) | 2.758 (5) | 171 (5) |
O9—H5W···O6iv | 0.85 (5) | 2.59 (5) | 2.951 (4) | 107 (4) |
O9—H5W···O7iv | 0.85 (5) | 2.10 (5) | 2.905 (5) | 159 (5) |
O10—H9W···O11iv | 0.75 (6) | 2.30 (5) | 2.993 (5) | 154 (5) |
C4—H4···O2v | 0.93 | 2.57 | 3.195 (4) | 124.9 |
O11—H2W···O6 | 0.88 (6) | 2.54 (5) | 2.953 (4) | 109 (4) |
O11—H2W···O7 | 0.88 (6) | 2.01 (6) | 2.877 (4) | 166 (5) |
O9—H6W···O10 | 0.81 (4) | 1.97 (2) | 2.763 (5) | 167 (5) |
O10—H8W···O1 | 0.87 (7) | 2.18 (7) | 2.891 (4) | 140 (5) |
O10—H8W···O7 | 0.87 (7) | 2.20 (7) | 2.936 (4) | 142 (6) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1/2, y, −z+1/2; (iii) x−1/2, −y+1/2, −z; (iv) −x+1, −y+1, −z; (v) x, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the DST for the FIST program.
References
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gartland, G. L., Freeman, G. R. & Bugg, C. E. (1974). Acta Cryst. B30, 1841–1849. CSD CrossRef IUCr Journals Web of Science Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Herbstein, F. H., Kapon, M. & Wielinski, S. (1977). Acta Cryst. B33, 649–654. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Liu, C., Shi, X., Du, B., Wu, C. & Zhang, M. (2008). Acta Cryst. E64, m270–m271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452–1460. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Natarajan, S., Vijitha, K. V., Dhas, S. A. M. B., Suresh, J. & Lakshman, P. L. N. (2008). Acta Cryst. E64, m581. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Zhang, T. L., Feng, C. G., Zhang, J. G. & Yu, K. B. (2001). Energ. Mater. 9, 37–39. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Picric acid forms salts with many organic and metallic cations (Gartland et al., 1974). Crystal structures have been reported for isomorphous NH4 and K picrates (Maartmann-Moe, 1969), thallium picrate (Herbstein et al., 1977), recently for manganese picrate (Liu et al., 2008) and zinc picrate (Natarajan et al., 2008). This work is part of a systematic investigation on the structures of the metal complexes of picric acid.
In the structure of the title compound, each CdII ion is coordinated by the O atoms of six water molecules (Fig. 1). The Cd—O distances range from 2.219 (3)Å to 2.299 (3)Å. The coordination polyhedra around the CdII ion can be described as a distorted octahedron. The picrate anion adopts a keto form with a C6—O7 bond distance of 1.250 (4)Å; the C1—C6 [1.444 (5)Å] and C5—C6 [1.454 (5)Å] bond distances are longer than the other C—C bond lengths of the benzene ring. The three nitro groups are twisted out of the attached benzene ring by 17.89 (3)° [N1/O1/O2], 27.94 (4)° [N2/O5/O6] and 13.65 (3)° [N3/O3/O4]. The twisting of these nitro groups may be attributed to the O—H···O hydrogen bonding interactions taking place between water and picrate O atoms. The C5—C6—C1 bond angle (111.8 (3)°) is smaller than the corresponding angle in picric acid (116.4 (5)°; Yang et al., 2001). The packing of the molecules is governed by the large number of O—H···O hydrogen bonds (Table 1).