metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m664-m665

Aqua­bis­(4-nitro­benzoato)-κ2O,O′;κO-(piperidinium-4-carboxyl­ato-κ2O,O′)cadmium(II)

aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

(Received 14 April 2009; accepted 13 May 2009; online 20 May 2009)

In the mixed ligand title compound, [Cd(C6H11NO2)(C7H4NO4)2(H2O)], which exhibits a discrete mononuclear structure, the CdII atom is in a distorted octa­hedral geometry, surrounded by five carboxyl­ate O atoms and one coordinated water mol­ecule. The piperdinium ring adopts a chair conformation and the two 4-nitro­benzoate rings are oriented at a dihedral angle of 75.8 (1)°. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mononuclear entities into a three-dimensional supra­molecular network.

Related literature

For the framework topologies and potential applications of coordination complexes with mixed ligands, see: Muthu et al. (2002[Muthu, S., Yip, J. H. K. & Vittal, J. J. (2002). J. Chem. Soc. Dalton Trans. pp. 4561-4568.]); Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Zheng et al. (2004[Zheng, X. J., Sun, C. Y., Lu, S. Z., Liao, F. H., Gao, S. & Jin, L. P. (2004). Eur. J. Inorg. Chem. pp. 3262-3268.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., ÖKeeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]). For 4-piperidine­carboxylic acid as a zwitterion in aqueous solution, see: Mora et al. (2002[Mora, A. J., Delgado, G., Ramírez, B. M., Rincón, L., Almeida, R., Cuervo, J. & Bahsas, A. (2002). J. Mol. Struct. 615, 201-208.]); and for its ability to act selectively as a bridging or terminal ligand, see: Inomata et al. (2002[Inomata, Y., Ando, M. & Howell, F. S. (2002). J. Mol. Struct. 616, 201-212.]). For related structures, see: Adams et al. (2006a[Adams, C. J., Angeloni, A., Orpen, A. G., Podesta, T. J. & Shore, B. (2006a). Cryst. Growth Des. 6, 411-422.],b[Adams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006b). Dalton Trans. pp. 4078-4092.]); Podesta & Orpen (2002[Podesta, T. J. & Orpen, A. G. (2002). CrystEngComm, 4, 336-342.]); Delgado et al. (2001[Delgado, G., Mora, A. J. & Bahsas, A. (2001). Acta Cryst. C57, 965-967.]). For Cd—O bond lengths, see: Inomata et al. (2004[Inomata, Y., Arai, Y., Yamakoshi, T. & Howell, F. S. (2004). J. Inorg. Biochem. 98, 2149-2159.]); Wang et al. (2008[Wang, X. G., Li, J., Ding, B., Yang, E. C. & Zhao, X. J. (2008). J. Mol. Struct. 876, 268-277.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H11NO2)(C7H4NO4)2(H2O)]

  • Mr = 591.80

  • Monoclinic, P 21 /c

  • a = 22.7135 (7) Å

  • b = 6.6294 (2) Å

  • c = 14.9658 (5) Å

  • β = 91.3400 (10)°

  • V = 2252.89 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.733, Tmax = 0.804

  • 10944 measured reflections

  • 3950 independent reflections

  • 3615 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.056

  • S = 1.05

  • 3950 reflections

  • 316 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O5 2.1917 (18)
Cd1—O11 2.3061 (19)
Cd1—O2 2.3229 (17)
Cd1—O9 2.3327 (17)
Cd1—O10 2.3534 (18)
Cd1—O1 2.3684 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11A⋯O3i 0.85 2.26 3.019 (3) 149
O11—H11B⋯O10ii 0.85 1.91 2.754 (3) 172
N3—H3A⋯O9iii 0.90 2.04 2.887 (3) 156
N3—H3B⋯O6iv 0.90 1.89 2.762 (3) 163
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x, y+1, z; (iv) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the rational design and skillful construction of the coordination complexes with mixed ligands have aroused great interest due to their intriguing framework topologies and potential applications in ino-exchange (Muthu et al., 2002), catalysis (Fujita et al., 1994), luminescence (Zheng et al., 2004), and gas storage (Rosi et al., 2003). Bearing two potential binding sites (–NH– and –COOH) capable of coordination with transition metal atoms, 4-piperidinecarboxylic acid exists as a zwitterion with the amino group protonated and the carboxylic group deprotonated in aqueous solution (Mora et al., 2002). Thus, by carefully control the degree of the protonation/deprotonation of carboxylic and/or amino groups, it can selectively act as a bridge ligand linking different metal atoms into an infinite high-dimensional framework or as a terminal ligand forming a discrete complex (Inomata et al., 2002). However, to the best of our knowledge, only a few examples involved in 4-piperidinecarboxylic acid have been reported by far (Adams et al., 2006a,b; Podesta et al., 2002). Thus, to continue to explore the coordination behavior of 4-piperidinecarboxylic acid, herein, we report the crystal structure of a CdII complex with 4-piperidinecarboxylate and 4-nitrobenzoxylate anion.

As shown in Fig. 1, the mononuclear structure of the title complex, (I), consists of one crystallographic independent CdII atom, two separate 4-nitrobenzoxylate anions, one zwitterionic 4-piperidinecarboxylate molecule, and one coordinated water molecule. The sole CdII center is six-coordinated by one coordinated water molecule (O11), and five carboxylate O atoms from two independent 4-nitrobenzoxylate (O1, O2 and O5) and one 4-piperidinecarboxylate molecule (O9 and O10), exhibiting a distorted octahedral geometry (Table 1.). The Cd–O bond distances are in the range of 2.1914 (16)–2.3684 (17)Å, which are comparable to those previously reported values (Inomata et al., 2004; Wang et al., 2008). The carboxylate group of 4-nitrobenzoxylate anion presents two different coordination modes: monodentate and asymmetric chelating bidentate fashions. In contrast, the carboxylate group of 4-piperidinecarboxylate only adopts an asymmetric chelating bidentate coordination mode. Additionally, the N atom of piperidine ring does not coordinate to a metal atom, and the protonated piperidine ring of 4-piperdinecarboxylate is in a chair conformation significantly resulted from the relatively lower energy (Delgado et al., 2001).

As shown in Fig. 2, the adjacent mononuclear entities are linked in to a two-dimensional (2-D) layer by threefold hydrogen bonding interactions between the protonated –NH2+/coordinated water molecule and the carboxylate group of 4-piperdinecarboxylate /4-nitrobenzoxylate anion (Table 2.). The neighbour 2-D layers are further assembled into a 3-D supramolecular network (Fig. 3) also by the hydrogen bonding interaction between the coordinated water molecule and the carboxylate group of 4-nitrobenzoxylate anion (O11–H11A···O3). Thus, the abundant hydrogen bonds interactions significantly dominate the formation of 3-D supramolecular network of the title complex.

Related literature top

For the framework topologies and potential applications in ino-exchange of coordination complexes with mixed ligands, see: Muthu et al. (2002); Fujita et al. (1994); Zheng et al. (2004); Rosi et al. (2003). 4-piperidinecarboxylic acid exists as a zwitterion with the amino group protonated and the carboxylic group deprotonated in aqueous solution (Mora et al., 2002). It can selectively act as a bridge ligand linking different metal atoms into an infinite high-dimensional framework or as a terminal ligand forming a discrete complex (Inomata et al., 2002). For related structures, see: Adams et al. (2006a,b); Podesta et al. (2002); Delgado et al. (2001). For Cd—O bond lengths, see: Inomata et al. (2004); Wang et al. (2008).

Experimental top

To an aqueous solution (5 ml) of CdCl2. 2.5H2O (45.7 mg, 0.2 mmol) was slowly added a methanol solution (5 ml) containing 4-piperidinecarboxylic acid (12.9 mg, 0.1 mmol) and 4-nitrobenzoic acid (16.7 mg, 0.1 mmol) with constant stirring. And the pH value of the mixture was adjusted to 6 by NaOH solution (0.1 M). The resulting colorless solution was further stirred for half an hour and filtered. The filtrate was allowed to evaporate at room temperature. Pale-yellow block-shaped crystals were obtained within two weeks (yield 70% based on CdII salt).

Refinement top

The H atoms of the water molecule were located in the final difference Fourier map, their positions were refined and their isotropic displacement parameters were set to 1.5 times the equivalent displacement parameter of the O atom. H atoms of the NH2+ and the piperidine ring were placed in geometrically calculated positions and their isotropic displacement parameters were set to 1.2 times the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The 2-D layer of (I) formed by hydrogen bonding interactions. Only H atoms involved in hydrogen bonds are included.
[Figure 3] Fig. 3. The 3-D network of (I) formed by hydrogen bond interactions. Only H atoms involved in hydrogen bonds are included.
Aquabis(4-nitrobenzoato)-κ2O,O';κO-(piperidinium-4- carboxylato-κ2O,O')cadmium(II) top
Crystal data top
[Cd(C6H11NO2)(C7H4NO4)2(H2O)]F(000) = 1192
Mr = 591.80Dx = 1.745 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8249 reflections
a = 22.7135 (7) Åθ = 2.9–27.8°
b = 6.6294 (2) ŵ = 1.04 mm1
c = 14.9658 (5) ÅT = 296 K
β = 91.340 (1)°Block, pale-yellow
V = 2252.89 (12) Å30.32 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3950 independent reflections
Radiation source: fine-focus sealed tube3615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1826
Tmin = 0.733, Tmax = 0.804k = 77
10944 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.8541P]
where P = (Fo2 + 2Fc2)/3
3950 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.37 e Å3
18 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cd(C6H11NO2)(C7H4NO4)2(H2O)]V = 2252.89 (12) Å3
Mr = 591.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.7135 (7) ŵ = 1.04 mm1
b = 6.6294 (2) ÅT = 296 K
c = 14.9658 (5) Å0.32 × 0.28 × 0.22 mm
β = 91.340 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3615 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.804Rint = 0.014
10944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02018 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
3950 reflectionsΔρmin = 0.32 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.219460 (8)0.68670 (3)0.490995 (11)0.03129 (7)
O10.11917 (8)0.7419 (3)0.45149 (12)0.0458 (5)
O20.18499 (8)0.7480 (3)0.34618 (12)0.0372 (4)
O30.10379 (9)0.7684 (4)0.13243 (15)0.0595 (6)
O40.04142 (11)0.7829 (5)0.02901 (15)0.0822 (9)
O50.30087 (8)0.5260 (3)0.46044 (13)0.0450 (5)
O60.34464 (10)0.7998 (3)0.40672 (16)0.0563 (6)
O70.59387 (12)0.2162 (5)0.3509 (3)0.1201 (13)
O80.54181 (11)0.0455 (4)0.3661 (2)0.0759 (7)
O90.24780 (8)0.7579 (3)0.63847 (11)0.0371 (4)
O100.23667 (10)1.0130 (3)0.54773 (12)0.0506 (5)
O110.18002 (9)0.3782 (3)0.52820 (14)0.0490 (5)
H11A0.14860.36920.49630.073*
H11B0.20070.27200.53420.073*
N10.05315 (11)0.7738 (4)0.10707 (16)0.0432 (6)
N20.54786 (12)0.1355 (4)0.3662 (2)0.0637 (8)
N30.28125 (9)1.4822 (3)0.78005 (14)0.0354 (5)
H3A0.26041.56100.74200.043*
H3B0.29461.56030.82530.043*
C10.08383 (11)0.7676 (4)0.30125 (16)0.0297 (5)
C20.02551 (11)0.7688 (4)0.32711 (17)0.0326 (5)
H20.01690.76750.38750.039*
C30.01979 (11)0.7717 (4)0.26380 (17)0.0342 (6)
H30.05890.77300.28060.041*
C40.00508 (11)0.7727 (4)0.17489 (17)0.0331 (6)
C50.05237 (12)0.7745 (4)0.14668 (17)0.0384 (6)
H50.06080.77790.08620.046*
C60.09691 (11)0.7712 (4)0.21095 (17)0.0354 (6)
H60.13600.77130.19370.043*
C70.13244 (11)0.7537 (4)0.37115 (17)0.0309 (5)
C80.39914 (11)0.4942 (4)0.41654 (17)0.0356 (6)
C90.44834 (14)0.5789 (5)0.3783 (2)0.0549 (8)
H90.44800.71440.36230.066*
C100.49774 (14)0.4642 (5)0.3638 (3)0.0622 (9)
H100.53120.52170.33980.075*
C110.49655 (12)0.2628 (5)0.3857 (2)0.0445 (7)
C120.44856 (12)0.1744 (4)0.42363 (18)0.0402 (6)
H120.44880.03770.43770.048*
C130.39998 (12)0.2921 (4)0.44039 (17)0.0367 (6)
H130.36760.23560.46790.044*
C140.34426 (12)0.6197 (4)0.42904 (17)0.0372 (6)
C150.27278 (11)1.0862 (4)0.69599 (15)0.0306 (5)
H150.29541.00780.74040.037*
C160.31251 (11)1.2505 (4)0.66016 (17)0.0349 (6)
H16A0.34691.18890.63420.042*
H16B0.29151.32420.61330.042*
C170.33216 (12)1.3960 (4)0.73289 (18)0.0399 (6)
H17A0.35771.32620.77560.048*
H17B0.35461.50450.70670.048*
C180.24177 (13)1.3237 (4)0.81621 (17)0.0370 (6)
H18A0.20811.38700.84340.044*
H18B0.26291.24720.86200.044*
C190.22071 (11)1.1830 (4)0.74276 (17)0.0341 (6)
H19A0.19691.25760.69940.041*
H19B0.19631.07830.76790.041*
C200.25127 (11)0.9437 (4)0.62321 (16)0.0326 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03884 (12)0.02632 (11)0.02842 (11)0.00414 (8)0.00520 (7)0.00244 (7)
O10.0443 (11)0.0636 (13)0.0294 (10)0.0109 (10)0.0012 (8)0.0033 (9)
O20.0321 (10)0.0429 (10)0.0364 (10)0.0004 (8)0.0041 (8)0.0006 (8)
O30.0341 (12)0.0792 (16)0.0646 (14)0.0025 (11)0.0104 (10)0.0013 (12)
O40.0595 (15)0.149 (3)0.0372 (13)0.0001 (16)0.0105 (11)0.0044 (15)
O50.0403 (11)0.0396 (11)0.0552 (12)0.0066 (9)0.0049 (9)0.0040 (9)
O60.0592 (13)0.0369 (12)0.0725 (15)0.0100 (10)0.0061 (11)0.0148 (10)
O70.0492 (15)0.0736 (19)0.240 (4)0.0041 (14)0.053 (2)0.026 (2)
O80.0572 (14)0.0516 (15)0.120 (2)0.0142 (12)0.0266 (14)0.0137 (14)
O90.0543 (11)0.0239 (9)0.0331 (9)0.0009 (8)0.0006 (8)0.0017 (7)
O100.0843 (14)0.0275 (9)0.0388 (10)0.0071 (9)0.0225 (10)0.0030 (8)
O110.0479 (11)0.0328 (10)0.0650 (13)0.0032 (9)0.0228 (10)0.0083 (9)
N10.0420 (14)0.0409 (13)0.0462 (15)0.0022 (11)0.0101 (11)0.0018 (11)
N20.0408 (14)0.0533 (16)0.098 (2)0.0069 (12)0.0211 (14)0.0190 (15)
N30.0487 (13)0.0225 (10)0.0348 (11)0.0030 (9)0.0047 (9)0.0030 (9)
C10.0331 (13)0.0233 (12)0.0325 (13)0.0020 (10)0.0009 (10)0.0021 (10)
C20.0384 (14)0.0297 (13)0.0299 (13)0.0030 (11)0.0027 (11)0.0025 (10)
C30.0301 (13)0.0307 (13)0.0418 (14)0.0015 (10)0.0034 (11)0.0024 (11)
C40.0350 (14)0.0280 (13)0.0359 (14)0.0012 (10)0.0067 (11)0.0015 (10)
C50.0400 (15)0.0461 (16)0.0290 (13)0.0027 (12)0.0021 (11)0.0029 (12)
C60.0306 (13)0.0420 (15)0.0338 (13)0.0004 (11)0.0028 (11)0.0013 (11)
C70.0365 (14)0.0211 (12)0.0348 (14)0.0027 (10)0.0035 (11)0.0000 (10)
C80.0371 (14)0.0330 (14)0.0364 (13)0.0006 (11)0.0047 (11)0.0007 (11)
C90.0538 (19)0.0326 (16)0.079 (2)0.0024 (14)0.0086 (16)0.0141 (15)
C100.0452 (18)0.0460 (19)0.096 (3)0.0031 (15)0.0208 (17)0.0118 (18)
C110.0355 (15)0.0420 (16)0.0563 (18)0.0032 (12)0.0044 (13)0.0059 (14)
C120.0409 (15)0.0327 (14)0.0469 (16)0.0016 (12)0.0012 (12)0.0075 (12)
C130.0357 (14)0.0367 (15)0.0376 (14)0.0008 (11)0.0015 (11)0.0052 (11)
C140.0428 (15)0.0368 (15)0.0316 (13)0.0036 (12)0.0089 (11)0.0015 (11)
C150.0397 (14)0.0226 (12)0.0293 (12)0.0040 (10)0.0045 (10)0.0004 (10)
C160.0326 (13)0.0373 (14)0.0348 (13)0.0010 (11)0.0039 (11)0.0015 (11)
C170.0365 (14)0.0382 (15)0.0447 (15)0.0071 (12)0.0039 (12)0.0011 (12)
C180.0517 (16)0.0265 (13)0.0332 (13)0.0015 (11)0.0082 (12)0.0019 (10)
C190.0386 (14)0.0273 (13)0.0367 (14)0.0066 (11)0.0064 (11)0.0020 (11)
C200.0410 (13)0.0248 (12)0.0318 (12)0.0055 (10)0.0035 (10)0.0039 (10)
Geometric parameters (Å, º) top
Cd1—O52.1917 (18)C3—C41.379 (4)
Cd1—O112.3061 (19)C3—H30.9300
Cd1—O22.3229 (17)C4—C51.381 (4)
Cd1—O92.3327 (17)C5—C61.380 (4)
Cd1—O102.3534 (18)C5—H50.9300
Cd1—O12.3684 (19)C6—H60.9300
Cd1—C72.675 (2)C8—C91.386 (4)
Cd1—C202.697 (2)C8—C131.387 (4)
O1—C71.249 (3)C8—C141.514 (4)
O2—C71.260 (3)C9—C101.377 (4)
O3—N11.220 (3)C9—H90.9300
O4—N11.206 (3)C10—C111.375 (4)
O5—C141.265 (3)C10—H100.9300
O6—C141.240 (3)C11—C121.372 (4)
O7—N21.201 (4)C12—C131.379 (4)
O8—N21.207 (4)C12—H120.9300
O9—C201.256 (3)C13—H130.9300
O10—C201.257 (3)C15—C201.514 (3)
O11—H11A0.8504C15—C161.520 (4)
O11—H11B0.8500C15—C191.529 (3)
N1—C41.473 (3)C15—H150.9800
N2—C111.474 (4)C16—C171.514 (4)
N3—C171.483 (3)C16—H16A0.9700
N3—C181.491 (3)C16—H16B0.9700
N3—H3A0.9000C17—H17A0.9700
N3—H3B0.9000C17—H17B0.9700
C1—C21.389 (4)C18—C191.511 (3)
C1—C61.391 (3)C18—H18A0.9700
C1—C71.506 (3)C18—H18B0.9700
C2—C31.382 (4)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
O5—Cd1—O1187.34 (7)C1—C6—H6119.7
O5—Cd1—O299.09 (7)O1—C7—O2122.4 (2)
O11—Cd1—O2104.84 (7)O1—C7—C1118.9 (2)
O5—Cd1—O994.60 (7)O2—C7—C1118.7 (2)
O11—Cd1—O992.93 (7)O1—C7—Cd162.30 (13)
O2—Cd1—O9157.95 (7)O2—C7—Cd160.23 (12)
O5—Cd1—O10112.86 (8)C1—C7—Cd1173.83 (17)
O11—Cd1—O10142.21 (7)C9—C8—C13119.4 (3)
O2—Cd1—O10103.02 (6)C9—C8—C14120.2 (2)
O9—Cd1—O1055.45 (6)C13—C8—C14120.4 (2)
O5—Cd1—O1146.54 (7)C10—C9—C8120.6 (3)
O11—Cd1—O179.66 (7)C10—C9—H9119.7
O2—Cd1—O155.86 (6)C8—C9—H9119.7
O9—Cd1—O1116.58 (6)C11—C10—C9118.6 (3)
O10—Cd1—O195.67 (7)C11—C10—H10120.7
O5—Cd1—C7123.68 (7)C9—C10—H10120.7
O11—Cd1—C791.37 (7)C12—C11—C10122.3 (3)
O2—Cd1—C728.08 (7)C12—C11—N2118.4 (3)
O9—Cd1—C7141.64 (7)C10—C11—N2119.3 (3)
O10—Cd1—C7101.72 (7)C11—C12—C13118.7 (3)
O1—Cd1—C727.83 (7)C11—C12—H12120.7
O5—Cd1—C20104.32 (7)C13—C12—H12120.7
O11—Cd1—C20118.82 (7)C12—C13—C8120.4 (3)
O2—Cd1—C20130.75 (7)C12—C13—H13119.8
O9—Cd1—C2027.72 (7)C8—C13—H13119.8
O10—Cd1—C2027.77 (7)O6—C14—O5125.7 (3)
O1—Cd1—C20108.98 (7)O6—C14—C8119.0 (3)
C7—Cd1—C20124.63 (7)O5—C14—C8115.3 (2)
C7—O1—Cd189.86 (15)C20—C15—C16112.2 (2)
C7—O2—Cd191.69 (15)C20—C15—C19110.6 (2)
C14—O5—Cd1120.47 (17)C16—C15—C19109.4 (2)
C20—O9—Cd192.50 (14)C20—C15—H15108.2
C20—O10—Cd191.50 (15)C16—C15—H15108.2
Cd1—O11—H11A104.6C19—C15—H15108.2
Cd1—O11—H11B122.9C17—C16—C15111.8 (2)
H11A—O11—H11B117.1C17—C16—H16A109.3
O4—N1—O3122.3 (2)C15—C16—H16A109.3
O4—N1—C4119.4 (2)C17—C16—H16B109.3
O3—N1—C4118.3 (2)C15—C16—H16B109.3
O7—N2—O8122.8 (3)H16A—C16—H16B107.9
O7—N2—C11118.6 (3)N3—C17—C16111.6 (2)
O8—N2—C11118.6 (3)N3—C17—H17A109.3
C17—N3—C18112.6 (2)C16—C17—H17A109.3
C17—N3—H3A109.1N3—C17—H17B109.3
C18—N3—H3A109.1C16—C17—H17B109.3
C17—N3—H3B109.1H17A—C17—H17B108.0
C18—N3—H3B109.1N3—C18—C19110.7 (2)
H3A—N3—H3B107.8N3—C18—H18A109.5
C2—C1—C6119.8 (2)C19—C18—H18A109.5
C2—C1—C7119.7 (2)N3—C18—H18B109.5
C6—C1—C7120.4 (2)C19—C18—H18B109.5
C3—C2—C1120.6 (2)H18A—C18—H18B108.1
C3—C2—H2119.7C18—C19—C15110.9 (2)
C1—C2—H2119.7C18—C19—H19A109.5
C4—C3—C2117.9 (2)C15—C19—H19A109.5
C4—C3—H3121.0C18—C19—H19B109.5
C2—C3—H3121.0C15—C19—H19B109.5
C3—C4—C5123.1 (2)H19A—C19—H19B108.0
C3—C4—N1118.2 (2)O9—C20—O10120.4 (2)
C5—C4—N1118.7 (2)O9—C20—C15120.1 (2)
C6—C5—C4118.0 (2)O10—C20—C15119.5 (2)
C6—C5—H5121.0O9—C20—Cd159.78 (12)
C4—C5—H5121.0O10—C20—Cd160.73 (13)
C5—C6—C1120.5 (2)C15—C20—Cd1176.71 (18)
C5—C6—H6119.7
O5—Cd1—O1—C744.7 (2)C20—Cd1—C7—O2113.00 (15)
O11—Cd1—O1—C7113.45 (16)O5—Cd1—C7—C149.5 (17)
O2—Cd1—O1—C72.54 (14)O11—Cd1—C7—C138.2 (17)
O9—Cd1—O1—C7158.45 (14)O2—Cd1—C7—C181.7 (17)
O10—Cd1—O1—C7104.44 (16)O9—Cd1—C7—C1134.7 (17)
C20—Cd1—O1—C7129.46 (15)O10—Cd1—C7—C1177.4 (17)
O5—Cd1—O2—C7153.29 (15)O1—Cd1—C7—C1102.8 (17)
O11—Cd1—O2—C763.65 (15)C20—Cd1—C7—C1165.3 (17)
O9—Cd1—O2—C779.0 (2)C13—C8—C9—C100.1 (5)
O10—Cd1—O2—C790.55 (15)C14—C8—C9—C10177.8 (3)
O1—Cd1—O2—C72.52 (14)C8—C9—C10—C111.8 (5)
C20—Cd1—O2—C788.77 (16)C9—C10—C11—C121.9 (5)
O11—Cd1—O5—C14176.52 (19)C9—C10—C11—N2176.8 (3)
O2—Cd1—O5—C1471.91 (19)O7—N2—C11—C12164.7 (4)
O9—Cd1—O5—C1490.75 (19)O8—N2—C11—C1215.5 (5)
O10—Cd1—O5—C1436.4 (2)O7—N2—C11—C1016.6 (5)
O1—Cd1—O5—C14109.9 (2)O8—N2—C11—C10163.1 (4)
C7—Cd1—O5—C1486.6 (2)C10—C11—C12—C130.1 (5)
C20—Cd1—O5—C1464.4 (2)N2—C11—C12—C13178.8 (3)
O5—Cd1—O9—C20112.35 (16)C11—C12—C13—C82.1 (4)
O11—Cd1—O9—C20160.08 (16)C9—C8—C13—C122.1 (4)
O2—Cd1—O9—C2016.0 (3)C14—C8—C13—C12175.7 (2)
O10—Cd1—O9—C202.34 (15)Cd1—O5—C14—O65.4 (4)
O1—Cd1—O9—C2080.19 (16)Cd1—O5—C14—C8176.17 (15)
C7—Cd1—O9—C2064.15 (19)C9—C8—C14—O61.8 (4)
O5—Cd1—O10—C2077.03 (17)C13—C8—C14—O6179.6 (3)
O11—Cd1—O10—C2040.4 (2)C9—C8—C14—O5176.7 (3)
O2—Cd1—O10—C20177.09 (16)C13—C8—C14—O51.1 (4)
O9—Cd1—O10—C202.33 (15)C20—C15—C16—C17178.2 (2)
O1—Cd1—O10—C20120.86 (16)C19—C15—C16—C1755.1 (3)
C7—Cd1—O10—C20148.36 (16)C18—N3—C17—C1654.5 (3)
C6—C1—C2—C30.6 (4)C15—C16—C17—N354.3 (3)
C7—C1—C2—C3176.9 (2)C17—N3—C18—C1956.0 (3)
C1—C2—C3—C40.2 (4)N3—C18—C19—C1557.1 (3)
C2—C3—C4—C51.2 (4)C20—C15—C19—C18179.4 (2)
C2—C3—C4—N1179.4 (2)C16—C15—C19—C1856.6 (3)
O4—N1—C4—C3177.0 (3)Cd1—O9—C20—O104.2 (3)
O3—N1—C4—C31.9 (4)Cd1—O9—C20—C15176.2 (2)
O4—N1—C4—C52.4 (4)Cd1—O10—C20—O94.1 (3)
O3—N1—C4—C5178.7 (3)Cd1—O10—C20—C15176.2 (2)
C3—C4—C5—C61.3 (4)C16—C15—C20—O9140.5 (2)
N1—C4—C5—C6179.3 (2)C19—C15—C20—O997.1 (3)
C4—C5—C6—C10.5 (4)C16—C15—C20—O1039.9 (3)
C2—C1—C6—C50.4 (4)C19—C15—C20—O1082.6 (3)
C7—C1—C6—C5177.0 (2)C16—C15—C20—Cd153 (3)
Cd1—O1—C7—O24.6 (3)C19—C15—C20—Cd1175 (3)
Cd1—O1—C7—C1173.1 (2)O5—Cd1—C20—O972.07 (16)
Cd1—O2—C7—O14.7 (3)O11—Cd1—C20—O922.85 (18)
Cd1—O2—C7—C1173.03 (19)O2—Cd1—C20—O9172.13 (13)
C2—C1—C7—O10.5 (4)O10—Cd1—C20—O9175.9 (3)
C6—C1—C7—O1176.9 (2)O1—Cd1—C20—O9111.27 (15)
C2—C1—C7—O2178.3 (2)C7—Cd1—C20—O9137.25 (15)
C6—C1—C7—O20.9 (4)O5—Cd1—C20—O10112.06 (16)
C2—C1—C7—Cd1100.0 (17)O11—Cd1—C20—O10153.02 (15)
C6—C1—C7—Cd177.4 (17)O2—Cd1—C20—O103.7 (2)
O5—Cd1—C7—O1152.24 (15)O9—Cd1—C20—O10175.9 (3)
O11—Cd1—C7—O164.52 (16)O1—Cd1—C20—O1064.60 (17)
O2—Cd1—C7—O1175.5 (2)C7—Cd1—C20—O1038.62 (19)
O9—Cd1—C7—O131.9 (2)O5—Cd1—C20—C1517 (3)
O10—Cd1—C7—O179.80 (16)O11—Cd1—C20—C15112 (3)
C20—Cd1—C7—O162.53 (18)O2—Cd1—C20—C1599 (3)
O5—Cd1—C7—O232.23 (17)O9—Cd1—C20—C1589 (3)
O11—Cd1—C7—O2119.95 (15)O10—Cd1—C20—C1595 (3)
O9—Cd1—C7—O2143.58 (14)O1—Cd1—C20—C15159 (3)
O10—Cd1—C7—O295.73 (15)C7—Cd1—C20—C15133 (3)
O1—Cd1—C7—O2175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O3i0.852.263.019 (3)149
O11—H11B···O10ii0.851.912.754 (3)172
N3—H3A···O9iii0.902.042.887 (3)156
N3—H3B···O6iv0.901.892.762 (3)163
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C6H11NO2)(C7H4NO4)2(H2O)]
Mr591.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)22.7135 (7), 6.6294 (2), 14.9658 (5)
β (°) 91.340 (1)
V3)2252.89 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.733, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
10944, 3950, 3615
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.056, 1.05
No. of reflections3950
No. of parameters316
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Selected geometric parameters (Å, º) top
Cd1—O52.1917 (18)Cd1—O92.3327 (17)
Cd1—O112.3061 (19)Cd1—O102.3534 (18)
Cd1—O22.3229 (17)Cd1—O12.3684 (19)
O5—Cd1—O1187.34 (7)O5—Cd1—C20104.32 (7)
O5—Cd1—C7123.68 (7)O11—Cd1—C20118.82 (7)
O11—Cd1—C791.37 (7)C7—Cd1—C20124.63 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O3i0.852.263.019 (3)148.7
O11—H11B···O10ii0.851.912.754 (3)171.7
N3—H3A···O9iii0.902.042.887 (3)156.2
N3—H3B···O6iv0.901.892.762 (3)162.7
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+5/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin Education Committee (2006ZD07).

References

First citationAdams, C. J., Angeloni, A., Orpen, A. G., Podesta, T. J. & Shore, B. (2006a). Cryst. Growth Des. 6, 411–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006b). Dalton Trans. pp. 4078–4092.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelgado, G., Mora, A. J. & Bahsas, A. (2001). Acta Cryst. C57, 965–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationInomata, Y., Ando, M. & Howell, F. S. (2002). J. Mol. Struct. 616, 201–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationInomata, Y., Arai, Y., Yamakoshi, T. & Howell, F. S. (2004). J. Inorg. Biochem. 98, 2149–2159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMora, A. J., Delgado, G., Ramírez, B. M., Rincón, L., Almeida, R., Cuervo, J. & Bahsas, A. (2002). J. Mol. Struct. 615, 201–208.  Web of Science CrossRef CAS Google Scholar
First citationMuthu, S., Yip, J. H. K. & Vittal, J. J. (2002). J. Chem. Soc. Dalton Trans. pp. 4561–4568.  Web of Science CSD CrossRef Google Scholar
First citationPodesta, T. J. & Orpen, A. G. (2002). CrystEngComm, 4, 336–342.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., ÖKeeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. G., Li, J., Ding, B., Yang, E. C. & Zhao, X. J. (2008). J. Mol. Struct. 876, 268–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, X. J., Sun, C. Y., Lu, S. Z., Liao, F. H., Gao, S. & Jin, L. P. (2004). Eur. J. Inorg. Chem. pp. 3262–3268.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m664-m665
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds