organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-O-Iso­propyl­­idene-1-O-p-tolyl­sulfonylglycerol

aDepartment of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 22 April 2009; accepted 22 April 2009; online 7 May 2009)

In the title compound, C13H18O5S, the five-membered ring has an envelope conformation. The packing involves four C—H⋯O inter­actions, three of which combine to form layers of mol­ecules parallel to the bc plane.

Related literature

For related literature, see: Baer & Fischer (1948[Baer, E. & Fischer, H. O. L. (1948). J. Am. Chem. Soc. 70, 609-610.]); Jones et al. (2003[Jones, P. G., Kuś, P. & Celinski, R. (2003). Acta Cryst. E59, o117-o118.]); Kazemi et al. (2007[Kazemi, F., Massah, A. R. & Javaherian, M. (2007). Tetrahedron, 63, 5083-5087.]); Ouchi et al. (1990[Ouchi, M., Inoue, Y., Liu, Y., Nagamune, S., Nakamura, S., Wada, K. & Hakushi, K. (1990). Bull. Chem. Soc. Jpn, 63, 1260-1262.]). The structure of a related derivative is presented in the following paper, see: Kuś et al. (2009[Kuś, P., Rojkiewicz, M., Zięba, G., Witoszek, M. & Jones, P. G. (2009). Acta Cryst. E65, o1192.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18O5S

  • Mr = 286.33

  • Monoclinic, P 21 /c

  • a = 15.143 (2) Å

  • b = 5.7297 (9) Å

  • c = 15.665 (2) Å

  • β = 90.385 (3)°

  • V = 1359.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 133 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: none

  • 12509 measured reflections

  • 3357 independent reflections

  • 2339 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.114

  • S = 1.05

  • 3357 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.95 2.60 3.212 (2) 122
C17—H17C⋯O1ii 0.98 2.65 3.369 (3) 131
C17—H17B⋯O1iii 0.98 2.66 3.558 (3) 153
C5—H5A⋯O2iv 0.98 2.64 3.509 (3) 148
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isopropylidene and tosyl groups are often used as protecting or activating units in polyhydroxyalkyl compounds used for synthesis of sugar-like derivatives. Recently we described the crystal structure of L-arabitol tosylate protected by two isopropylidene groups (Jones et al., 2003). D,L-Isopropylideneglycerol is an important substrate for the synthesis of many derivatives of glycerol; the isopropylidene protecting group is a convenient form of protection for the two vicinal hydroxyls in the molecule of glycerol. After the reaction at the third, free hydroxyl group, acid hydrolysis of the protecting group leads to 1-O-substituted glycerol derivatives. In our experiments we used commercial (Aldrich) solketal as precursor for the protecting group. Tosylation of this compound leads to compound 1 (Baer & Fischer, 1948; Ouchi et al. 1990; Kazemi et al. 2007).

The molecule is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The five-membered ring displays an envelope conformation, with approximate local mirror symmetry about O5 and the midpoint of C2—O4. The chain of five atoms from S to C3 displays an extended conformation, with torsion angles close to ±180°.

There are four weak C—H···O interactions with H···O between 2.6 and 2.7 Å. Three of these combine to form layers of molecules parallel to the bc plane at x 1/4 (Fig. 2) and 3/4.

The structure of a related derivative is presented in the following paper (Kuś et al., 2009).

Related literature top

For related literature, see: Baer & Fischer (1948); Jones et al. (2003); Kazemi et al. (2007); Ouchi et al. (1990). The structure of a related derivative is presented in the following paper, see: Kuś et al. (2009).

Experimental top

The compound 1 was obtained according to method described by Kazemi et al. (2007). The analytical and spectroscopic data are consistent with the literature. Single crystals suitable for X-ray analysis were obtained by slow evaporation from petroleum ether.

NMR data: 1H NMR (CDCl3, 400 MHz): δ 7.80 (d, 2H), 7.35 (d, 2H), 4.28 (q, 1H), 4.06–3.95 (m, 3H), 3.78–3.75 (dd, 1H), 2.45 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H). - 13C NMR (100 MHz): δ 145.21, 132.81, 130.06, 128.15, 110.20, 73.05, 69.62, 66.35, 26.77, 25.28, 21.80.

IR data: —S(O2)—O— vibrations at 1177 (versus) and 1348 cm-1 (s); 1,3-dioxalone ring at 971 cm-1. There are no bands above 2990 cm-1.

Refinement top

Methyl H atoms were identified in difference syntheses and refined as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic), 0.99 Å (CH2) and 1.00 Å (CH, sp3); Uiso(H) values were fixed at 1.2Ueq of the parent C atom (1.2Ueq for methyl H).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound in the crystal structure. Displacement ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound in the region x 1/4. H atoms not involved in H bonding (thick dashed lines) are omitted for clarity.
2,3-O-Isopropylidene-1-O-p-tolylsulfonylglycerol top
Crystal data top
C13H18O5SDx = 1.399 Mg m3
Mr = 286.33Melting point: 321 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.143 (2) ÅCell parameters from 5579 reflections
b = 5.7297 (9) Åθ = 2.6–29.6°
c = 15.665 (2) ŵ = 0.25 mm1
β = 90.385 (3)°T = 133 K
V = 1359.2 (4) Å3Lath, colourless
Z = 40.40 × 0.20 × 0.05 mm
F(000) = 608
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2339 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.111
Graphite monochromatorθmax = 28.3°, θmin = 1.3°
Detector resolution: 8.192 pixels mm-1h = 1920
ω scansk = 77
12509 measured reflectionsl = 2020
3357 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.1472P]
where P = (Fo2 + 2Fc2)/3
3357 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C13H18O5SV = 1359.2 (4) Å3
Mr = 286.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.143 (2) ŵ = 0.25 mm1
b = 5.7297 (9) ÅT = 133 K
c = 15.665 (2) Å0.40 × 0.20 × 0.05 mm
β = 90.385 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2339 reflections with I > 2σ(I)
12509 measured reflectionsRint = 0.111
3357 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3357 reflectionsΔρmin = 0.48 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.20851 (4)0.79423 (9)0.35153 (3)0.01847 (14)
O10.14179 (11)0.9403 (3)0.38666 (8)0.0271 (4)
O20.28879 (11)0.8986 (3)0.32446 (9)0.0287 (4)
O30.22741 (10)0.6118 (2)0.42410 (8)0.0194 (3)
O40.31609 (11)0.4304 (3)0.56622 (8)0.0278 (4)
O50.44258 (10)0.2270 (3)0.54736 (8)0.0243 (4)
C10.30372 (15)0.4563 (4)0.41503 (12)0.0229 (5)
H1A0.35920.54780.41410.027*
H1B0.29910.36610.36130.027*
C20.30289 (15)0.2953 (4)0.49053 (11)0.0210 (4)
H20.24550.20930.49320.025*
C30.38036 (15)0.1234 (4)0.49008 (13)0.0243 (5)
H3A0.36180.03250.51050.029*
H3B0.40530.10770.43210.029*
C40.39249 (14)0.3442 (4)0.61038 (12)0.0197 (5)
C50.36304 (18)0.1785 (4)0.67969 (13)0.0322 (6)
H5A0.32100.25790.71710.048*
H5B0.41450.12800.71320.048*
H5C0.33460.04200.65370.048*
C60.44515 (18)0.5465 (5)0.64354 (15)0.0371 (6)
H6A0.46040.65010.59610.056*
H6B0.49940.48890.67080.056*
H6C0.41020.63270.68540.056*
C110.16470 (14)0.6269 (3)0.26750 (11)0.0162 (4)
C120.17492 (14)0.7085 (4)0.18417 (11)0.0184 (4)
H120.20620.84890.17310.022*
C130.13833 (14)0.5797 (4)0.11806 (12)0.0202 (5)
H130.14360.63560.06120.024*
C140.09418 (14)0.3717 (4)0.13239 (12)0.0192 (4)
C150.08507 (14)0.2955 (4)0.21663 (12)0.0201 (4)
H150.05470.15370.22770.024*
C160.11935 (14)0.4224 (4)0.28417 (12)0.0188 (4)
H160.11190.37000.34120.023*
C170.05788 (16)0.2279 (4)0.06012 (13)0.0259 (5)
H17A0.09390.08720.05320.039*
H17B0.05910.31950.00730.039*
H17C0.00310.18300.07270.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0273 (3)0.0169 (2)0.0112 (2)0.0003 (2)0.00206 (17)0.0006 (2)
O10.0413 (11)0.0222 (8)0.0180 (7)0.0097 (7)0.0027 (7)0.0032 (6)
O20.0373 (10)0.0323 (9)0.0166 (7)0.0122 (8)0.0038 (6)0.0014 (6)
O30.0256 (9)0.0215 (7)0.0111 (6)0.0052 (6)0.0013 (5)0.0010 (5)
O40.0350 (10)0.0365 (9)0.0117 (6)0.0169 (7)0.0068 (6)0.0064 (6)
O50.0205 (8)0.0315 (9)0.0207 (7)0.0047 (7)0.0018 (6)0.0069 (6)
C10.0273 (13)0.0260 (11)0.0154 (9)0.0079 (10)0.0013 (8)0.0016 (8)
C20.0252 (12)0.0222 (10)0.0157 (9)0.0014 (10)0.0013 (8)0.0029 (8)
C30.0284 (13)0.0259 (11)0.0185 (10)0.0041 (10)0.0061 (8)0.0038 (8)
C40.0181 (11)0.0271 (12)0.0141 (9)0.0026 (9)0.0020 (7)0.0006 (8)
C50.0432 (15)0.0325 (13)0.0209 (10)0.0022 (12)0.0017 (10)0.0071 (10)
C60.0373 (16)0.0429 (15)0.0310 (12)0.0098 (12)0.0041 (10)0.0151 (11)
C110.0203 (11)0.0149 (9)0.0132 (8)0.0030 (8)0.0019 (7)0.0002 (7)
C120.0233 (11)0.0179 (9)0.0141 (8)0.0003 (9)0.0012 (8)0.0030 (8)
C130.0256 (12)0.0214 (11)0.0135 (9)0.0027 (9)0.0014 (8)0.0016 (8)
C140.0186 (11)0.0213 (10)0.0178 (9)0.0034 (9)0.0011 (8)0.0040 (8)
C150.0218 (11)0.0174 (9)0.0211 (9)0.0032 (9)0.0003 (8)0.0003 (9)
C160.0216 (12)0.0191 (10)0.0156 (9)0.0004 (9)0.0022 (8)0.0020 (8)
C170.0303 (13)0.0271 (12)0.0203 (10)0.0024 (10)0.0022 (9)0.0069 (9)
Geometric parameters (Å, º) top
S—O21.4220 (16)C15—C161.382 (3)
S—O11.4253 (16)C1—H1A0.9900
S—O31.5694 (14)C1—H1B0.9900
S—C111.7552 (19)C2—H21.0000
O3—C11.467 (2)C3—H3A0.9900
O4—C21.429 (2)C3—H3B0.9900
O4—C41.432 (2)C5—H5A0.9800
O5—C41.418 (2)C5—H5B0.9800
O5—C31.426 (2)C5—H5C0.9800
C1—C21.500 (3)C6—H6A0.9800
C2—C31.532 (3)C6—H6B0.9800
C4—C61.498 (3)C6—H6C0.9800
C4—C51.512 (3)C12—H120.9500
C11—C161.384 (3)C13—H130.9500
C11—C121.396 (2)C15—H150.9500
C12—C131.384 (3)C16—H160.9500
C13—C141.386 (3)C17—H17A0.9800
C14—C151.398 (3)C17—H17B0.9800
C14—C171.502 (3)C17—H17C0.9800
O2—S—O1118.55 (10)O4—C2—H2110.4
O2—S—O3110.12 (9)C1—C2—H2110.4
O1—S—O3103.75 (8)C3—C2—H2110.4
O2—S—C11109.01 (9)O5—C3—H3A111.1
O1—S—C11110.18 (10)C2—C3—H3A111.1
O3—S—C11104.21 (8)O5—C3—H3B111.1
C1—O3—S118.31 (11)C2—C3—H3B111.1
C2—O4—C4108.77 (15)H3A—C3—H3B109.0
C4—O5—C3106.32 (16)C4—C5—H5A109.5
O3—C1—C2106.63 (16)C4—C5—H5B109.5
O4—C2—C1108.62 (17)H5A—C5—H5B109.5
O4—C2—C3104.44 (16)C4—C5—H5C109.5
C1—C2—C3112.42 (17)H5A—C5—H5C109.5
O5—C3—C2103.40 (16)H5B—C5—H5C109.5
O5—C4—O4105.15 (14)C4—C6—H6A109.5
O5—C4—C6108.76 (18)C4—C6—H6B109.5
O4—C4—C6109.08 (19)H6A—C6—H6B109.5
O5—C4—C5111.38 (18)C4—C6—H6C109.5
O4—C4—C5108.81 (19)H6A—C6—H6C109.5
C6—C4—C5113.32 (18)H6B—C6—H6C109.5
C16—C11—C12121.23 (18)C13—C12—H12120.8
C16—C11—S120.43 (14)C11—C12—H12120.8
C12—C11—S118.32 (16)C12—C13—H13119.1
C13—C12—C11118.33 (19)C14—C13—H13119.1
C12—C13—C14121.90 (18)C16—C15—H15119.3
C13—C14—C15118.20 (18)C14—C15—H15119.3
C13—C14—C17121.64 (18)C15—C16—H16120.5
C15—C14—C17120.16 (19)C11—C16—H16120.5
C16—C15—C14121.30 (19)C14—C17—H17A109.5
C15—C16—C11119.02 (18)C14—C17—H17B109.5
O3—C1—H1A110.4H17A—C17—H17B109.5
C2—C1—H1A110.4C14—C17—H17C109.5
O3—C1—H1B110.4H17A—C17—H17C109.5
C2—C1—H1B110.4H17B—C17—H17C109.5
H1A—C1—H1B108.6
O2—S—O3—C142.19 (16)O2—S—C11—C16145.72 (17)
O1—S—O3—C1170.05 (14)O1—S—C11—C1682.58 (19)
C11—S—O3—C174.60 (16)O3—S—C11—C1628.16 (19)
S—O3—C1—C2177.32 (13)O2—S—C11—C1235.86 (19)
C4—O4—C2—C1122.29 (19)O1—S—C11—C1295.84 (18)
C4—O4—C2—C32.1 (2)O3—S—C11—C12153.41 (16)
O3—C1—C2—O464.2 (2)C16—C11—C12—C130.1 (3)
O3—C1—C2—C3179.29 (16)S—C11—C12—C13178.31 (16)
C4—O5—C3—C232.7 (2)C11—C12—C13—C141.5 (3)
O4—C2—C3—O518.5 (2)C12—C13—C14—C151.6 (3)
C1—C2—C3—O599.1 (2)C12—C13—C14—C17177.4 (2)
C3—O5—C4—O434.7 (2)C13—C14—C15—C160.3 (3)
C3—O5—C4—C6151.42 (19)C17—C14—C15—C16178.8 (2)
C3—O5—C4—C583.0 (2)C14—C15—C16—C111.0 (3)
C2—O4—C4—O522.3 (2)C12—C11—C16—C151.1 (3)
C2—O4—C4—C6138.77 (18)S—C11—C16—C15179.51 (16)
C2—O4—C4—C597.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.603.212 (2)122
C17—H17C···O1ii0.982.653.369 (3)131
C17—H17B···O1iii0.982.663.558 (3)153
C5—H5A···O2iv0.982.643.509 (3)148
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H18O5S
Mr286.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)15.143 (2), 5.7297 (9), 15.665 (2)
β (°) 90.385 (3)
V3)1359.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12509, 3357, 2339
Rint0.111
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.114, 1.05
No. of reflections3357
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.48

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.603.212 (2)122.3
C17—H17C···O1ii0.982.653.369 (3)130.8
C17—H17B···O1iii0.982.663.558 (3)152.8
C5—H5A···O2iv0.982.643.509 (3)148.4
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

Financial support by the Polish State Committee for Scientific Research (grant No. R 05 043 03) is gratefully acknowledged.

References

First citationBaer, E. & Fischer, H. O. L. (1948). J. Am. Chem. Soc. 70, 609–610.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJones, P. G., Kuś, P. & Celinski, R. (2003). Acta Cryst. E59, o117–o118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKazemi, F., Massah, A. R. & Javaherian, M. (2007). Tetrahedron, 63, 5083–5087.  Web of Science CrossRef CAS Google Scholar
First citationKuś, P., Rojkiewicz, M., Zięba, G., Witoszek, M. & Jones, P. G. (2009). Acta Cryst. E65, o1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuchi, M., Inoue, Y., Liu, Y., Nagamune, S., Nakamura, S., Wada, K. & Hakushi, K. (1990). Bull. Chem. Soc. Jpn, 63, 1260–1262.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds