organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

De­acetyl­ tenuazonic acid

aBundesanstalt für Materialforschung und -prüfung, Abteilung Analytische Chemie; Referenzmaterialien, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: david.siegel@bam.de

(Received 23 April 2009; accepted 24 April 2009; online 7 May 2009)

The heterocycle in the title compound {systematic name: (5S)-5-[(1S)-1-methyl­prop­yl]pyrrolidine-2,4-dione}, C8H13NO2, is planar (r.m.s. deviation for all non-H atoms = 0.008 Å). The crystal structure is stabilized by N—H⋯O hydrogen bonding.

Related literature

Tenuazonic acid (TA) is an Alternaria mycotoxin commonly encountered in food (Siegel, Rasenko et al., 2009[Siegel, D., Rasenko, T., Koch, M. & Nehls, I. (2009). J. Chromatogr. A. 1216, 4582-4588.]; Weidenbörner, 2001[Weidenbörner, M. (2001). In Encyclopedia of Food Mycotoxins. Berlin: Springer.]). The title compound is known to be formed upon boiling TA in 0.1 M HCl (Stickings, 1959[Stickings, C. E. (1959). Biochem. J. 72, 332-340.]). For the synthesis of the title compound, see: Lebrun et al. (1988[Lebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Phytochemistry, 27, 77-84.]). For the crystal structure of the tenuazonic acid copper (II) salt, see: Dippenaar et al. (1977[Dippenaar, A., Holzapfel, C. W. & Boeyens, J. C. A. (1977). J. Chem. Crystallogr. 7, 189-197.]) and for the 2,4-dinitro­phenyl­hydrazone, see: Siegel, Merkel et al. (2009[Siegel, D., Merkel, S., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o988-o989.]). For the structures of other pyrrolidine-2,4-diones, see, for example: Yu et al. (2007[Yu, G.-S., Xu, H.-Z. & Zhu, Y.-Q. (2007). Acta Cryst. E63, o3384.]); Zhu et al. (2004[Zhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, o196-o198.]); Ellis & Spek (2001[Ellis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433-434.]).

[Scheme 1]

Experimental

Crystal data
  • C8H13NO2

  • Mr = 155.19

  • Monoclinic, P 21

  • a = 5.0114 (4) Å

  • b = 7.7961 (4) Å

  • c = 10.9919 (10) Å

  • β = 95.778 (4)°

  • V = 427.26 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.44 × 0.16 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.744, Tmax = 0.993 (expected range = 0.669–0.893)

  • 1866 measured reflections

  • 1571 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.06

  • 1571 reflections

  • 103 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 697 Friedel pairs

  • Flack parameter: 0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 2.02 2.8963 (18) 164
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Tenuazonic acid (TA) is an Alternaria mycotoxin commonly encountered in food (Siegel, Rasenko et al., 2009; Weidenbörner, 2001). The title compound is known to be formed upon boiling of TA in 0.1 M HCl (Stickings, 1959). It is therefore a possible degradation product which might also be encountered in food matrices.

Whereas TA itself could so far only be crystallized as its copper (II) salt (Dippenaar et al., 1977) or 2,4-dinitrophenylhydrazone (Siegel, Merkel et al., 2009), the title compound is conveniently crystallized from hexane/ethyl acetate.

Each molecule (Fig. 1) is connected to two adjacent molecules via N—H···O hydrogen bonds. Along the b axis chains of symmetry equivalent molecules are formed (Fig. 2).

Related literature top

Tenuazonic acid (TA) is an Alternaria mycotoxin commonly encountered in food (Siegel, Rasenko et al., 2009; Weidenbörner, 2001). The title compound is known to be formed upon boiling of the Alternaria mycotoxin tenuazonic acid in 0.1 M HCl (Stickings, 1959). For the synthesis of the title compound, see: Lebrun et al. (1988). For the crystal structure of the tenuazonic acid copper (II) salt, see: Dippenaar et al. (1977) and for the 2,4-dinitrophenylhydrazone, see: Siegel, Merkel et al. (2009). For the structures of other pyrrolidine-2,4-diones, see, for example: Yu et al. (2007); Zhu et al. (2004); Ellis & Spek (2001).

Experimental top

The title compound was supplied by the workgroup of Professor R. Faust (University of Kassel, Germany) by synthesis according to a literature procedure (Lebrun et al., 1988). For x-ray analysis, it was recrystallized several times from hexane:ethyl acetate 50:50 (v:v).

Refinement top

The hydrogen atoms were located in difference maps but positioned with idealized geometry and refined using the riding model, with C—H = 0.98–1.00 Å or N—H = 0.90 Å and Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the title compound with atomic labeling of, shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the unit cell of the title compound along [100], showing the hydrogen-bonded chains running along the twofold screw axis.
(5S)-5-[(1S)-1-methylpropyl]pyrrolidine-2,4-dione top
Crystal data top
C8H13NO2F(000) = 168
Mr = 155.19Dx = 1.206 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 5.0114 (4) Åθ = 67–69°
b = 7.7961 (4) ŵ = 0.71 mm1
c = 10.9919 (10) ÅT = 193 K
β = 95.778 (4)°Block, yellow
V = 427.26 (6) Å30.44 × 0.16 × 0.16 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1558 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.040
Graphite monochromatorθmax = 69.9°, θmin = 4.0°
ω/2θ scansh = 65
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 89
Tmin = 0.744, Tmax = 0.993l = 1313
1866 measured reflections3 standard reflections every 60 min
1571 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.0771P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.22 e Å3
1571 reflectionsΔρmin = 0.17 e Å3
103 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.017 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 697 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.1 (2)
Crystal data top
C8H13NO2V = 427.26 (6) Å3
Mr = 155.19Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.0114 (4) ŵ = 0.71 mm1
b = 7.7961 (4) ÅT = 193 K
c = 10.9919 (10) Å0.44 × 0.16 × 0.16 mm
β = 95.778 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1558 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.040
Tmin = 0.744, Tmax = 0.9933 standard reflections every 60 min
1866 measured reflections intensity decay: 2%
1571 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.22 e Å3
S = 1.06Δρmin = 0.17 e Å3
1571 reflectionsAbsolute structure: Flack (1983), 697 Friedel pairs
103 parametersAbsolute structure parameter: 0.1 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0559 (2)0.66044 (16)0.50335 (11)0.0386 (3)
O20.5911 (3)0.74694 (19)0.22570 (14)0.0494 (4)
N10.2318 (3)0.48864 (18)0.41048 (11)0.0303 (3)
H10.18660.39460.45190.036*
C10.1196 (3)0.6392 (2)0.43372 (14)0.0305 (3)
C20.2400 (3)0.7779 (2)0.36022 (15)0.0360 (4)
H2A0.10120.83200.30210.043*
H2B0.32650.86750.41450.043*
C30.4437 (3)0.6853 (2)0.29328 (15)0.0335 (4)
C40.4354 (3)0.4941 (2)0.32393 (13)0.0296 (3)
H40.61220.45940.36720.036*
C50.3757 (3)0.3822 (2)0.20975 (14)0.0317 (4)
H50.50400.41610.15000.038*
C60.0924 (4)0.4130 (3)0.14885 (16)0.0425 (4)
H6A0.03730.35940.19950.051*
H6B0.05710.53800.14670.051*
C70.0441 (6)0.3429 (4)0.0202 (2)0.0761 (8)
H7A0.17210.39460.03070.114*
H7B0.13910.37060.01380.114*
H7C0.06790.21810.02190.114*
C80.4266 (4)0.1937 (2)0.2416 (2)0.0474 (5)
H8A0.60880.18040.28210.071*
H8B0.40710.12500.16660.071*
H8C0.29670.15490.29660.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0498 (7)0.0316 (6)0.0377 (6)0.0010 (5)0.0201 (5)0.0054 (5)
O20.0530 (8)0.0418 (8)0.0576 (8)0.0067 (6)0.0262 (6)0.0115 (6)
N10.0349 (7)0.0268 (7)0.0303 (6)0.0028 (5)0.0094 (5)0.0017 (5)
C10.0374 (8)0.0264 (8)0.0279 (7)0.0056 (6)0.0046 (6)0.0030 (6)
C20.0462 (9)0.0253 (8)0.0378 (8)0.0062 (7)0.0104 (7)0.0022 (7)
C30.0348 (8)0.0312 (8)0.0347 (8)0.0065 (6)0.0043 (6)0.0024 (7)
C40.0268 (7)0.0308 (8)0.0321 (7)0.0025 (6)0.0063 (5)0.0042 (7)
C50.0310 (8)0.0312 (8)0.0346 (8)0.0006 (6)0.0120 (6)0.0011 (6)
C60.0373 (9)0.0512 (11)0.0391 (9)0.0028 (7)0.0037 (7)0.0102 (8)
C70.0824 (18)0.087 (2)0.0547 (14)0.0218 (14)0.0144 (12)0.0302 (13)
C80.0558 (11)0.0317 (9)0.0573 (12)0.0060 (8)0.0182 (8)0.0003 (8)
Geometric parameters (Å, º) top
O1—C11.2338 (19)C5—C81.526 (2)
O2—C31.199 (2)C5—C61.526 (2)
N1—C11.337 (2)C5—H51.0000
N1—C41.4640 (18)C6—C71.512 (3)
N1—H10.9038C6—H6A0.9900
C1—C21.511 (2)C6—H6B0.9900
C2—C31.501 (2)C7—H7A0.9800
C2—H2A0.9900C7—H7B0.9800
C2—H2B0.9900C7—H7C0.9800
C3—C41.530 (2)C8—H8A0.9800
C4—C51.533 (2)C8—H8B0.9800
C4—H41.0000C8—H8C0.9800
C1—N1—C4115.63 (14)C6—C5—C4111.45 (13)
C1—N1—H1119.0C8—C5—H5107.6
C4—N1—H1125.2C6—C5—H5107.6
O1—C1—N1125.18 (14)C4—C5—H5107.6
O1—C1—C2125.70 (14)C7—C6—C5114.04 (16)
N1—C1—C2109.12 (14)C7—C6—H6A108.7
C3—C2—C1104.25 (14)C5—C6—H6A108.7
C3—C2—H2A110.9C7—C6—H6B108.7
C1—C2—H2A110.9C5—C6—H6B108.7
C3—C2—H2B110.9H6A—C6—H6B107.6
C1—C2—H2B110.9C6—C7—H7A109.5
H2A—C2—H2B108.9C6—C7—H7B109.5
O2—C3—C2127.06 (17)H7A—C7—H7B109.5
O2—C3—C4123.96 (16)C6—C7—H7C109.5
C2—C3—C4108.98 (13)H7A—C7—H7C109.5
N1—C4—C3101.98 (13)H7B—C7—H7C109.5
N1—C4—C5115.10 (13)C5—C8—H8A109.5
C3—C4—C5112.44 (13)C5—C8—H8B109.5
N1—C4—H4109.0H8A—C8—H8B109.5
C3—C4—H4109.0C5—C8—H8C109.5
C5—C4—H4109.0H8A—C8—H8C109.5
C8—C5—C6112.26 (15)H8B—C8—H8C109.5
C8—C5—C4110.21 (14)
C4—N1—C1—O1179.64 (15)C2—C3—C4—N11.75 (16)
C4—N1—C1—C20.22 (18)O2—C3—C4—C557.6 (2)
O1—C1—C2—C3179.26 (14)C2—C3—C4—C5122.08 (14)
N1—C1—C2—C31.33 (18)N1—C4—C5—C875.53 (17)
C1—C2—C3—O2178.44 (17)C3—C4—C5—C8168.27 (14)
C1—C2—C3—C41.90 (17)N1—C4—C5—C649.81 (19)
C1—N1—C4—C30.95 (16)C3—C4—C5—C666.39 (17)
C1—N1—C4—C5121.07 (15)C8—C5—C6—C770.6 (3)
O2—C3—C4—N1178.57 (16)C4—C5—C6—C7165.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.902.022.8963 (18)164
Symmetry code: (i) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H13NO2
Mr155.19
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)5.0114 (4), 7.7961 (4), 10.9919 (10)
β (°) 95.778 (4)
V3)427.26 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.44 × 0.16 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.744, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
1866, 1571, 1558
Rint0.040
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.06
No. of reflections1571
No. of parameters103
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17
Absolute structureFlack (1983), 697 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.902.022.8963 (18)164
Symmetry code: (i) x, y1/2, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDippenaar, A., Holzapfel, C. W. & Boeyens, J. C. A. (1977). J. Chem. Crystallogr. 7, 189–197.  CAS Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEllis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433–434.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Phytochemistry, 27, 77–84.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegel, D., Merkel, S., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o988–o989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiegel, D., Rasenko, T., Koch, M. & Nehls, I. (2009). J. Chromatogr. A. 1216, 4582–4588.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStickings, C. E. (1959). Biochem. J. 72, 332–340.  PubMed CAS Web of Science Google Scholar
First citationWeidenbörner, M. (2001). In Encyclopedia of Food Mycotoxins. Berlin: Springer.  Google Scholar
First citationYu, G.-S., Xu, H.-Z. & Zhu, Y.-Q. (2007). Acta Cryst. E63, o3384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, o196–o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds