organic compounds
Deacetyl tenuazonic acid
aBundesanstalt für Materialforschung und -prüfung, Abteilung Analytische Chemie; Referenzmaterialien, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: david.siegel@bam.de
The heterocycle in the title compound {systematic name: (5S)-5-[(1S)-1-methylpropyl]pyrrolidine-2,4-dione}, C8H13NO2, is planar (r.m.s. deviation for all non-H atoms = 0.008 Å). The is stabilized by N—H⋯O hydrogen bonding.
Related literature
Tenuazonic acid (TA) is an Alternaria mycotoxin commonly encountered in food (Siegel, Rasenko et al., 2009; Weidenbörner, 2001). The title compound is known to be formed upon boiling TA in 0.1 M HCl (Stickings, 1959). For the synthesis of the title compound, see: Lebrun et al. (1988). For the of the tenuazonic acid copper (II) salt, see: Dippenaar et al. (1977) and for the 2,4-dinitrophenylhydrazone, see: Siegel, Merkel et al. (2009). For the structures of other pyrrolidine-2,4-diones, see, for example: Yu et al. (2007); Zhu et al. (2004); Ellis & Spek (2001).
Experimental
Crystal data
|
Data collection
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809015372/bt2937sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809015372/bt2937Isup2.hkl
The title compound was supplied by the workgroup of Professor R. Faust (University of Kassel, Germany) by synthesis according to a literature procedure (Lebrun et al., 1988). For x-ray analysis, it was recrystallized several times from hexane:ethyl acetate 50:50 (v:v).
The hydrogen atoms were located in difference maps but positioned with idealized geometry and refined using the riding model, with C—H = 0.98–1.00 Å or N—H = 0.90 Å and Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C8H13NO2 | F(000) = 168 |
Mr = 155.19 | Dx = 1.206 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2yb | Cell parameters from 25 reflections |
a = 5.0114 (4) Å | θ = 67–69° |
b = 7.7961 (4) Å | µ = 0.71 mm−1 |
c = 10.9919 (10) Å | T = 193 K |
β = 95.778 (4)° | Block, yellow |
V = 427.26 (6) Å3 | 0.44 × 0.16 × 0.16 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 1558 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.040 |
Graphite monochromator | θmax = 69.9°, θmin = 4.0° |
ω/2θ scans | h = −6→5 |
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) | k = −8→9 |
Tmin = 0.744, Tmax = 0.993 | l = −13→13 |
1866 measured reflections | 3 standard reflections every 60 min |
1571 independent reflections | intensity decay: 2% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0616P)2 + 0.0771P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.098 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.22 e Å−3 |
1571 reflections | Δρmin = −0.17 e Å−3 |
103 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.017 (4) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 697 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.1 (2) |
C8H13NO2 | V = 427.26 (6) Å3 |
Mr = 155.19 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 5.0114 (4) Å | µ = 0.71 mm−1 |
b = 7.7961 (4) Å | T = 193 K |
c = 10.9919 (10) Å | 0.44 × 0.16 × 0.16 mm |
β = 95.778 (4)° |
Enraf–Nonius CAD-4 diffractometer | 1558 reflections with I > 2σ(I) |
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) | Rint = 0.040 |
Tmin = 0.744, Tmax = 0.993 | 3 standard reflections every 60 min |
1866 measured reflections | intensity decay: 2% |
1571 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.098 | Δρmax = 0.22 e Å−3 |
S = 1.06 | Δρmin = −0.17 e Å−3 |
1571 reflections | Absolute structure: Flack (1983), 697 Friedel pairs |
103 parameters | Absolute structure parameter: 0.1 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.0559 (2) | 0.66044 (16) | 0.50335 (11) | 0.0386 (3) | |
O2 | 0.5911 (3) | 0.74694 (19) | 0.22570 (14) | 0.0494 (4) | |
N1 | 0.2318 (3) | 0.48864 (18) | 0.41048 (11) | 0.0303 (3) | |
H1 | 0.1866 | 0.3946 | 0.4519 | 0.036* | |
C1 | 0.1196 (3) | 0.6392 (2) | 0.43372 (14) | 0.0305 (3) | |
C2 | 0.2400 (3) | 0.7779 (2) | 0.36022 (15) | 0.0360 (4) | |
H2A | 0.1012 | 0.8320 | 0.3021 | 0.043* | |
H2B | 0.3265 | 0.8675 | 0.4145 | 0.043* | |
C3 | 0.4437 (3) | 0.6853 (2) | 0.29328 (15) | 0.0335 (4) | |
C4 | 0.4354 (3) | 0.4941 (2) | 0.32393 (13) | 0.0296 (3) | |
H4 | 0.6122 | 0.4594 | 0.3672 | 0.036* | |
C5 | 0.3757 (3) | 0.3822 (2) | 0.20975 (14) | 0.0317 (4) | |
H5 | 0.5040 | 0.4161 | 0.1500 | 0.038* | |
C6 | 0.0924 (4) | 0.4130 (3) | 0.14885 (16) | 0.0425 (4) | |
H6A | −0.0373 | 0.3594 | 0.1995 | 0.051* | |
H6B | 0.0571 | 0.5380 | 0.1467 | 0.051* | |
C7 | 0.0441 (6) | 0.3429 (4) | 0.0202 (2) | 0.0761 (8) | |
H7A | 0.1721 | 0.3946 | −0.0307 | 0.114* | |
H7B | −0.1391 | 0.3706 | −0.0138 | 0.114* | |
H7C | 0.0679 | 0.2181 | 0.0219 | 0.114* | |
C8 | 0.4266 (4) | 0.1937 (2) | 0.2416 (2) | 0.0474 (5) | |
H8A | 0.6088 | 0.1804 | 0.2821 | 0.071* | |
H8B | 0.4071 | 0.1250 | 0.1666 | 0.071* | |
H8C | 0.2967 | 0.1549 | 0.2966 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0498 (7) | 0.0316 (6) | 0.0377 (6) | −0.0010 (5) | 0.0201 (5) | −0.0054 (5) |
O2 | 0.0530 (8) | 0.0418 (8) | 0.0576 (8) | −0.0067 (6) | 0.0262 (6) | 0.0115 (6) |
N1 | 0.0349 (7) | 0.0268 (7) | 0.0303 (6) | −0.0028 (5) | 0.0094 (5) | 0.0017 (5) |
C1 | 0.0374 (8) | 0.0264 (8) | 0.0279 (7) | −0.0056 (6) | 0.0046 (6) | −0.0030 (6) |
C2 | 0.0462 (9) | 0.0253 (8) | 0.0378 (8) | −0.0062 (7) | 0.0104 (7) | −0.0022 (7) |
C3 | 0.0348 (8) | 0.0312 (8) | 0.0347 (8) | −0.0065 (6) | 0.0043 (6) | 0.0024 (7) |
C4 | 0.0268 (7) | 0.0308 (8) | 0.0321 (7) | −0.0025 (6) | 0.0063 (5) | 0.0042 (7) |
C5 | 0.0310 (8) | 0.0312 (8) | 0.0346 (8) | 0.0006 (6) | 0.0120 (6) | −0.0011 (6) |
C6 | 0.0373 (9) | 0.0512 (11) | 0.0391 (9) | 0.0028 (7) | 0.0037 (7) | −0.0102 (8) |
C7 | 0.0824 (18) | 0.087 (2) | 0.0547 (14) | 0.0218 (14) | −0.0144 (12) | −0.0302 (13) |
C8 | 0.0558 (11) | 0.0317 (9) | 0.0573 (12) | 0.0060 (8) | 0.0182 (8) | −0.0003 (8) |
O1—C1 | 1.2338 (19) | C5—C8 | 1.526 (2) |
O2—C3 | 1.199 (2) | C5—C6 | 1.526 (2) |
N1—C1 | 1.337 (2) | C5—H5 | 1.0000 |
N1—C4 | 1.4640 (18) | C6—C7 | 1.512 (3) |
N1—H1 | 0.9038 | C6—H6A | 0.9900 |
C1—C2 | 1.511 (2) | C6—H6B | 0.9900 |
C2—C3 | 1.501 (2) | C7—H7A | 0.9800 |
C2—H2A | 0.9900 | C7—H7B | 0.9800 |
C2—H2B | 0.9900 | C7—H7C | 0.9800 |
C3—C4 | 1.530 (2) | C8—H8A | 0.9800 |
C4—C5 | 1.533 (2) | C8—H8B | 0.9800 |
C4—H4 | 1.0000 | C8—H8C | 0.9800 |
C1—N1—C4 | 115.63 (14) | C6—C5—C4 | 111.45 (13) |
C1—N1—H1 | 119.0 | C8—C5—H5 | 107.6 |
C4—N1—H1 | 125.2 | C6—C5—H5 | 107.6 |
O1—C1—N1 | 125.18 (14) | C4—C5—H5 | 107.6 |
O1—C1—C2 | 125.70 (14) | C7—C6—C5 | 114.04 (16) |
N1—C1—C2 | 109.12 (14) | C7—C6—H6A | 108.7 |
C3—C2—C1 | 104.25 (14) | C5—C6—H6A | 108.7 |
C3—C2—H2A | 110.9 | C7—C6—H6B | 108.7 |
C1—C2—H2A | 110.9 | C5—C6—H6B | 108.7 |
C3—C2—H2B | 110.9 | H6A—C6—H6B | 107.6 |
C1—C2—H2B | 110.9 | C6—C7—H7A | 109.5 |
H2A—C2—H2B | 108.9 | C6—C7—H7B | 109.5 |
O2—C3—C2 | 127.06 (17) | H7A—C7—H7B | 109.5 |
O2—C3—C4 | 123.96 (16) | C6—C7—H7C | 109.5 |
C2—C3—C4 | 108.98 (13) | H7A—C7—H7C | 109.5 |
N1—C4—C3 | 101.98 (13) | H7B—C7—H7C | 109.5 |
N1—C4—C5 | 115.10 (13) | C5—C8—H8A | 109.5 |
C3—C4—C5 | 112.44 (13) | C5—C8—H8B | 109.5 |
N1—C4—H4 | 109.0 | H8A—C8—H8B | 109.5 |
C3—C4—H4 | 109.0 | C5—C8—H8C | 109.5 |
C5—C4—H4 | 109.0 | H8A—C8—H8C | 109.5 |
C8—C5—C6 | 112.26 (15) | H8B—C8—H8C | 109.5 |
C8—C5—C4 | 110.21 (14) | ||
C4—N1—C1—O1 | 179.64 (15) | C2—C3—C4—N1 | −1.75 (16) |
C4—N1—C1—C2 | 0.22 (18) | O2—C3—C4—C5 | −57.6 (2) |
O1—C1—C2—C3 | 179.26 (14) | C2—C3—C4—C5 | 122.08 (14) |
N1—C1—C2—C3 | −1.33 (18) | N1—C4—C5—C8 | −75.53 (17) |
C1—C2—C3—O2 | −178.44 (17) | C3—C4—C5—C8 | 168.27 (14) |
C1—C2—C3—C4 | 1.90 (17) | N1—C4—C5—C6 | 49.81 (19) |
C1—N1—C4—C3 | 0.95 (16) | C3—C4—C5—C6 | −66.39 (17) |
C1—N1—C4—C5 | −121.07 (15) | C8—C5—C6—C7 | −70.6 (3) |
O2—C3—C4—N1 | 178.57 (16) | C4—C5—C6—C7 | 165.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.90 | 2.02 | 2.8963 (18) | 164 |
Symmetry code: (i) −x, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H13NO2 |
Mr | 155.19 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 193 |
a, b, c (Å) | 5.0114 (4), 7.7961 (4), 10.9919 (10) |
β (°) | 95.778 (4) |
V (Å3) | 427.26 (6) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.44 × 0.16 × 0.16 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (CORINC; Dräger & Gattow, 1971) |
Tmin, Tmax | 0.744, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1866, 1571, 1558 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.098, 1.06 |
No. of reflections | 1571 |
No. of parameters | 103 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.17 |
Absolute structure | Flack (1983), 697 Friedel pairs |
Absolute structure parameter | 0.1 (2) |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.90 | 2.02 | 2.8963 (18) | 164 |
Symmetry code: (i) −x, y−1/2, −z+1. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Dippenaar, A., Holzapfel, C. W. & Boeyens, J. C. A. (1977). J. Chem. Crystallogr. 7, 189–197. CAS Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Ellis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433–434. CSD CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Phytochemistry, 27, 77–84. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siegel, D., Merkel, S., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o988–o989. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siegel, D., Rasenko, T., Koch, M. & Nehls, I. (2009). J. Chromatogr. A. 1216, 4582–4588. Web of Science CrossRef PubMed CAS Google Scholar
Stickings, C. E. (1959). Biochem. J. 72, 332–340. PubMed CAS Web of Science Google Scholar
Weidenbörner, M. (2001). In Encyclopedia of Food Mycotoxins. Berlin: Springer. Google Scholar
Yu, G.-S., Xu, H.-Z. & Zhu, Y.-Q. (2007). Acta Cryst. E63, o3384. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, o196–o198. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tenuazonic acid (TA) is an Alternaria mycotoxin commonly encountered in food (Siegel, Rasenko et al., 2009; Weidenbörner, 2001). The title compound is known to be formed upon boiling of TA in 0.1 M HCl (Stickings, 1959). It is therefore a possible degradation product which might also be encountered in food matrices.
Whereas TA itself could so far only be crystallized as its copper (II) salt (Dippenaar et al., 1977) or 2,4-dinitrophenylhydrazone (Siegel, Merkel et al., 2009), the title compound is conveniently crystallized from hexane/ethyl acetate.
Each molecule (Fig. 1) is connected to two adjacent molecules via N—H···O hydrogen bonds. Along the b axis chains of symmetry equivalent molecules are formed (Fig. 2).