organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(2-Hy­droxy­ethyl)imino­meth­yl]-1,1′-bi-2-naphthol

aInstitute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: sculiruixiang@gmail.com

(Received 27 April 2009; accepted 1 May 2009; online 7 May 2009)

In the title compound, C23H19NO3, there is an intra­molecular O—H⋯N hydrogen bond, which forms a six-membered ring, and inter­molecular O—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For background on the application of salen complexes to asymmetric catalysis, see: Pu (1998[Pu, L. (1998). Chem. Rev. 98, 2405-2494.]). For the synthesis of the title compound, see: Chin et al. (2004[Chin, J., Kim, D. C., Kim, H. J., Francis, B. P. & Kim, K. M. (2004). Org. Lett. 6, 2591-2593.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19NO3

  • Mr = 357.39

  • Orthorhombic, P b c a

  • a = 12.6184 (3) Å

  • b = 9.7774 (2) Å

  • c = 29.7991 (6) Å

  • V = 3676.47 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.50 × 0.40 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.661, Tmax = 1.000 (expected range = 0.641–0.970)

  • 24940 measured reflections

  • 4220 independent reflections

  • 1912 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.00

  • 4220 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.87 2.6638 (17) 161
O3—H3A⋯O1ii 0.82 2.05 2.7724 (17) 147
O1—H1⋯N1 0.96 (2) 1.67 (2) 2.5649 (18) 153 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

BINOL and its derivatives have been largely used in asymmetric catalysis and chiral recognition (Pu, 1998). In this paper we present X-ray crystallographic analysis of the title compound (I), as the continuation of our previous studies.

As shown in Figure 1, an intramolecular O—H···N hydrogen bond between the hydroxy and the imino moieties forms a ring.

In the crystal, the molecules are connected by O—H···O hydrogen bonds ( Fig. 2).

Related literature top

For background on the application of salen complexes to asymmetric catalysis, see: Pu (1998). For the synthesis of the title compound, see: Chin et al. (2004).

Experimental top

The salen ligand,

3-((2-hydroxyethylimino)methyl)-1,1'-binaphthol was prepared by condensation of 3-carboxaldehyde-1,1'-binaphthol with 2-aminoethanol. Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol /methylene chloride (1:5) solution of the compound.

Refinement top

All H atoms except the one bonded to O1 (which was freely refined) were placed in calculated positions and refined in the riding-model approximation with O—H = 0.82Å and C—H = 0.93 or 0.97 Å) using a riding model with Uiso(H) = 1.2 Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding in the crystal structure of (I).
3-[(2-Hydroxyethyl)iminomethyl]-1,1'-bi-2-naphthol top
Crystal data top
C23H19NO3Dx = 1.291 Mg m3
Mr = 357.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3454 reflections
a = 12.6184 (3) Åθ = 2.7–22.4°
b = 9.7774 (2) ŵ = 0.09 mm1
c = 29.7991 (6) ÅT = 296 K
V = 3676.47 (14) Å3Block, red
Z = 80.50 × 0.40 × 0.36 mm
F(000) = 1504
Data collection top
Bruker SMART CCD area-detector
diffractometer
4220 independent reflections
Radiation source: fine-focus sealed tube1912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ϕ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1516
Tmin = 0.661, Tmax = 1.000k = 1212
24940 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
4220 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C23H19NO3V = 3676.47 (14) Å3
Mr = 357.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.6184 (3) ŵ = 0.09 mm1
b = 9.7774 (2) ÅT = 296 K
c = 29.7991 (6) Å0.50 × 0.40 × 0.36 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1912 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 1.000Rint = 0.089
24940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.15 e Å3
4220 reflectionsΔρmin = 0.14 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50545 (11)0.24608 (12)0.43973 (4)0.0661 (4)
H10.5349 (18)0.278 (2)0.4675 (8)0.109 (8)*
O20.31307 (9)0.02597 (13)0.38718 (4)0.0615 (4)
H2A0.24830.03210.38600.092*
O30.60553 (9)0.53599 (13)0.59680 (4)0.0647 (4)
H3A0.57900.61250.59630.097*
N10.60154 (12)0.25597 (15)0.51551 (4)0.0528 (4)
C10.54441 (13)0.11749 (16)0.43397 (5)0.0423 (5)
C20.52157 (13)0.04833 (17)0.39500 (5)0.0406 (4)
C30.56310 (13)0.08531 (17)0.38917 (5)0.0424 (5)
C40.54263 (15)0.16310 (18)0.35028 (6)0.0572 (6)
H4A0.50160.12550.32750.069*
C50.58156 (16)0.2919 (2)0.34540 (7)0.0696 (6)
H5A0.56780.34060.31920.083*
C60.64219 (16)0.3519 (2)0.37943 (7)0.0710 (6)
H6A0.66730.44070.37610.085*
C70.66425 (15)0.28066 (19)0.41715 (7)0.0617 (6)
H7A0.70590.32070.43930.074*
C80.62541 (13)0.14683 (17)0.42360 (6)0.0445 (5)
C90.64473 (13)0.07085 (18)0.46275 (6)0.0478 (5)
H9A0.68480.11040.48550.057*
C100.60711 (12)0.05847 (17)0.46872 (5)0.0392 (4)
C110.62936 (13)0.13284 (19)0.51008 (5)0.0452 (5)
H11A0.6693 (11)0.0826 (15)0.5322 (5)0.044 (4)*
C120.62678 (15)0.32605 (17)0.55768 (5)0.0530 (5)
H12A0.70290.32700.56230.064*
H12B0.59430.27830.58270.064*
C130.58577 (14)0.46884 (18)0.55525 (6)0.0549 (5)
H13A0.62070.51770.53110.066*
H13B0.51020.46770.54920.066*
C140.45087 (14)0.11281 (17)0.36073 (5)0.0432 (5)
C150.34642 (14)0.07470 (18)0.35878 (5)0.0472 (5)
C160.27531 (15)0.1368 (2)0.32883 (6)0.0590 (6)
H16A0.20460.10990.32830.071*
C170.31035 (17)0.2365 (2)0.30064 (6)0.0650 (6)
H17A0.26260.27820.28120.078*
C180.41683 (16)0.27781 (19)0.30024 (6)0.0549 (5)
C190.45588 (19)0.3789 (2)0.27067 (6)0.0702 (6)
H19A0.40920.42170.25100.084*
C200.5592 (2)0.4152 (2)0.27016 (6)0.0761 (7)
H20A0.58320.48110.25010.091*
C210.62985 (19)0.3531 (2)0.29999 (6)0.0734 (7)
H21A0.70090.37830.29970.088*
C220.59561 (16)0.25552 (19)0.32973 (6)0.0593 (6)
H22A0.64370.21600.34950.071*
C230.48854 (15)0.21437 (18)0.33073 (5)0.0478 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0975 (10)0.0520 (8)0.0489 (8)0.0232 (7)0.0257 (8)0.0095 (6)
O20.0562 (8)0.0747 (9)0.0536 (8)0.0005 (7)0.0008 (6)0.0132 (7)
O30.0730 (8)0.0630 (8)0.0579 (8)0.0175 (7)0.0196 (7)0.0187 (7)
N10.0659 (10)0.0540 (10)0.0385 (9)0.0022 (8)0.0086 (8)0.0029 (7)
C10.0485 (10)0.0401 (10)0.0382 (10)0.0048 (8)0.0000 (9)0.0015 (8)
C20.0447 (10)0.0445 (10)0.0325 (9)0.0024 (8)0.0005 (8)0.0010 (8)
C30.0442 (10)0.0481 (11)0.0350 (10)0.0015 (8)0.0035 (8)0.0005 (8)
C40.0661 (13)0.0612 (13)0.0442 (11)0.0094 (10)0.0003 (10)0.0067 (10)
C50.0841 (15)0.0675 (14)0.0571 (13)0.0148 (11)0.0012 (12)0.0223 (11)
C60.0750 (14)0.0562 (13)0.0816 (15)0.0182 (11)0.0013 (13)0.0155 (11)
C70.0581 (12)0.0565 (12)0.0704 (14)0.0155 (10)0.0078 (11)0.0059 (11)
C80.0423 (10)0.0461 (10)0.0450 (10)0.0051 (8)0.0011 (9)0.0022 (9)
C90.0427 (10)0.0554 (11)0.0454 (11)0.0046 (9)0.0074 (9)0.0066 (9)
C100.0424 (9)0.0431 (10)0.0322 (9)0.0011 (8)0.0007 (8)0.0040 (8)
C110.0480 (10)0.0522 (11)0.0355 (10)0.0006 (9)0.0055 (9)0.0067 (9)
C120.0664 (12)0.0519 (11)0.0407 (11)0.0016 (10)0.0094 (10)0.0035 (9)
C130.0604 (12)0.0573 (12)0.0471 (11)0.0057 (9)0.0105 (10)0.0088 (9)
C140.0518 (10)0.0497 (11)0.0282 (9)0.0076 (8)0.0024 (8)0.0025 (8)
C150.0534 (11)0.0523 (11)0.0359 (10)0.0084 (9)0.0005 (9)0.0014 (9)
C160.0555 (12)0.0790 (14)0.0426 (10)0.0097 (10)0.0091 (10)0.0000 (10)
C170.0763 (14)0.0760 (14)0.0425 (11)0.0176 (11)0.0132 (11)0.0057 (10)
C180.0778 (14)0.0557 (12)0.0312 (10)0.0066 (10)0.0039 (10)0.0003 (9)
C190.1052 (17)0.0666 (14)0.0390 (12)0.0089 (12)0.0046 (12)0.0044 (10)
C200.1250 (19)0.0609 (14)0.0425 (12)0.0102 (13)0.0083 (13)0.0062 (10)
C210.0907 (16)0.0754 (15)0.0542 (13)0.0164 (12)0.0142 (12)0.0060 (12)
C220.0715 (13)0.0649 (13)0.0414 (11)0.0009 (10)0.0031 (11)0.0015 (10)
C230.0616 (12)0.0521 (11)0.0297 (10)0.0056 (9)0.0017 (9)0.0043 (9)
Geometric parameters (Å, º) top
O1—C11.3609 (19)C10—C111.458 (2)
O1—H10.96 (2)C11—H11A0.964 (14)
O2—C151.3646 (19)C12—C131.491 (2)
O2—H2A0.8200C12—H12A0.9700
O3—C131.423 (2)C12—H12B0.9700
O3—H3A0.8200C13—H13A0.9700
N1—C111.264 (2)C13—H13B0.9700
N1—C121.466 (2)C14—C151.371 (2)
C1—C21.374 (2)C14—C231.418 (2)
C1—C101.425 (2)C15—C161.404 (2)
C2—C31.418 (2)C16—C171.361 (3)
C2—C141.495 (2)C16—H16A0.9300
C3—C41.410 (2)C17—C181.403 (3)
C3—C81.426 (2)C17—H17A0.9300
C4—C51.360 (3)C18—C191.413 (3)
C4—H4A0.9300C18—C231.425 (2)
C5—C61.399 (3)C19—C201.352 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.351 (3)C20—C211.398 (3)
C6—H6A0.9300C20—H20A0.9300
C7—C81.410 (2)C21—C221.372 (3)
C7—H7A0.9300C21—H21A0.9300
C8—C91.404 (2)C22—C231.410 (3)
C9—C101.362 (2)C22—H22A0.9300
C9—H9A0.9300
C1—O1—H1105.5 (13)N1—C12—H12B109.9
C15—O2—H2A109.5C13—C12—H12B109.9
C13—O3—H3A109.5H12A—C12—H12B108.3
C11—N1—C12119.62 (14)O3—C13—C12109.21 (14)
O1—C1—C2119.04 (15)O3—C13—H13A109.8
O1—C1—C10118.87 (14)C12—C13—H13A109.8
C2—C1—C10122.08 (15)O3—C13—H13B109.8
C1—C2—C3118.63 (15)C12—C13—H13B109.8
C1—C2—C14119.65 (15)H13A—C13—H13B108.3
C3—C2—C14121.68 (14)C15—C14—C23119.07 (15)
C4—C3—C2121.99 (15)C15—C14—C2119.20 (15)
C4—C3—C8117.70 (15)C23—C14—C2121.71 (15)
C2—C3—C8120.29 (15)O2—C15—C14117.79 (15)
C5—C4—C3121.41 (17)O2—C15—C16120.60 (16)
C5—C4—H4A119.3C14—C15—C16121.60 (17)
C3—C4—H4A119.3C17—C16—C15119.64 (18)
C4—C5—C6120.56 (18)C17—C16—H16A120.2
C4—C5—H5A119.7C15—C16—H16A120.2
C6—C5—H5A119.7C16—C17—C18121.51 (18)
C7—C6—C5119.96 (19)C16—C17—H17A119.2
C7—C6—H6A120.0C18—C17—H17A119.2
C5—C6—H6A120.0C17—C18—C19122.73 (18)
C6—C7—C8121.33 (18)C17—C18—C23118.52 (17)
C6—C7—H7A119.3C19—C18—C23118.75 (19)
C8—C7—H7A119.3C20—C19—C18121.8 (2)
C9—C8—C7122.93 (16)C20—C19—H19A119.1
C9—C8—C3118.05 (15)C18—C19—H19A119.1
C7—C8—C3119.02 (16)C19—C20—C21119.6 (2)
C10—C9—C8122.62 (16)C19—C20—H20A120.2
C10—C9—H9A118.7C21—C20—H20A120.2
C8—C9—H9A118.7C22—C21—C20120.8 (2)
C9—C10—C1118.31 (15)C22—C21—H21A119.6
C9—C10—C11120.41 (15)C20—C21—H21A119.6
C1—C10—C11121.27 (15)C21—C22—C23120.92 (19)
N1—C11—C10121.97 (16)C21—C22—H22A119.5
N1—C11—H11A122.9 (9)C23—C22—H22A119.5
C10—C11—H11A115.1 (9)C22—C23—C14122.30 (16)
N1—C12—C13108.70 (14)C22—C23—C18118.10 (17)
N1—C12—H12A109.9C14—C23—C18119.61 (17)
C13—C12—H12A109.9
O1—C1—C2—C3179.60 (15)C11—N1—C12—C13179.82 (16)
C10—C1—C2—C30.8 (2)N1—C12—C13—O3177.37 (14)
O1—C1—C2—C142.7 (2)C1—C2—C14—C1599.84 (19)
C10—C1—C2—C14176.94 (15)C3—C2—C14—C1577.8 (2)
C1—C2—C3—C4179.57 (16)C1—C2—C14—C2378.9 (2)
C14—C2—C3—C41.9 (2)C3—C2—C14—C23103.43 (19)
C1—C2—C3—C81.2 (2)C23—C14—C15—O2178.20 (14)
C14—C2—C3—C8176.48 (15)C2—C14—C15—O23.0 (2)
C2—C3—C4—C5178.97 (17)C23—C14—C15—C162.0 (3)
C8—C3—C4—C50.6 (3)C2—C14—C15—C16176.74 (15)
C3—C4—C5—C60.9 (3)O2—C15—C16—C17179.66 (16)
C4—C5—C6—C71.3 (3)C14—C15—C16—C170.6 (3)
C5—C6—C7—C81.4 (3)C15—C16—C17—C181.0 (3)
C6—C7—C8—C9178.55 (18)C16—C17—C18—C19178.59 (18)
C6—C7—C8—C31.0 (3)C16—C17—C18—C231.0 (3)
C4—C3—C8—C9179.00 (15)C17—C18—C19—C20178.56 (19)
C2—C3—C8—C90.6 (2)C23—C18—C19—C201.0 (3)
C4—C3—C8—C70.6 (2)C18—C19—C20—C211.0 (3)
C2—C3—C8—C7179.02 (16)C19—C20—C21—C220.2 (3)
C7—C8—C9—C10179.89 (17)C20—C21—C22—C230.6 (3)
C3—C8—C9—C100.5 (2)C21—C22—C23—C14179.33 (17)
C8—C9—C10—C11.0 (2)C21—C22—C23—C180.5 (3)
C8—C9—C10—C11179.91 (15)C15—C14—C23—C22177.84 (16)
O1—C1—C10—C9179.33 (15)C2—C14—C23—C223.4 (3)
C2—C1—C10—C90.3 (2)C15—C14—C23—C182.0 (2)
O1—C1—C10—C110.4 (2)C2—C14—C23—C18176.76 (15)
C2—C1—C10—C11179.21 (15)C17—C18—C23—C22179.31 (17)
C12—N1—C11—C10179.51 (15)C19—C18—C23—C220.3 (3)
C9—C10—C11—N1175.33 (16)C17—C18—C23—C140.5 (3)
C1—C10—C11—N15.7 (3)C19—C18—C23—C14179.91 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.872.6638 (17)161
O3—H3A···O1ii0.822.052.7724 (17)147
O1—H1···N10.96 (2)1.67 (2)2.5649 (18)153 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H19NO3
Mr357.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.6184 (3), 9.7774 (2), 29.7991 (6)
V3)3676.47 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.40 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.661, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24940, 4220, 1912
Rint0.089
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.00
No. of reflections4220
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.872.6638 (17)161.4
O3—H3A···O1ii0.822.052.7724 (17)146.9
O1—H1···N10.96 (2)1.67 (2)2.5649 (18)153 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChin, J., Kim, D. C., Kim, H. J., Francis, B. P. & Kim, K. M. (2004). Org. Lett. 6, 2591–2593.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPu, L. (1998). Chem. Rev. 98, 2405–2494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds