metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N′-Bis[(E)-3-phenyl­prop-2-en-1-yl­­idene]propane-1,3-di­amine-κ2N,N′]di­chloridocobalt(II)

aDepartment of Chemistry, Yasouj University, Yasouj 75914-353, Iran, bCatalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, cDepartment of Chemistry, Isfahan University of Technology, Isfahan, Iran, and dDepartment of Chemistry, Faculty of Science, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan
*Correspondence e-mail: mhhabibi@yahoo.com

(Received 27 April 2009; accepted 30 April 2009; online 7 May 2009)

The CoII atom in the title monomeric Schiff base complex, [CoCl2(C21H22N2)], is bonded to two Cl atoms and to two N atoms of the Schiff base ligand N,N′-bis­[(E)-3-phenyl­prop-2-en-1-yl­idene]propane-1,3-diamine in a distorted tetra­hedral geometry. The mol­ecule has an idealised mirror symmetry, but is not located on a crystallographic mirror plane.

Related literature

For transition metal complexes with Schiff base ligands, see: Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190, 537-555.]). For related structures, see: Amirnasr et al. (2003[Amirnasr, M., Schenk, K. J., Salavati, M., Dehghanpour, S., Taeb, A. & Tadjarodi, A. (2003). J. Coord. Chem. 56, 231-243.]); Blonk et al. (1985[Blonk, H. I., Driessen, W. L. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1699-1704.]); Habibi et al. (2007a[Habibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007a). Acta Cryst. E63, m2472.],b[Habibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007b). Acta Cryst. E63, m2580.]); Meghdadi et al. (2002[Meghdadi, S., Amirnasr, M., Schenk, K. J. & Dehghanpour, S. (2002). Helv. Chim. Acta, 85, 2807-2816.]); Scheidt et al. (1969[Scheidt, W. R., Hanson, J. C. & Rasmussen, P. G. (1969). Inorg. Chem. 8, 2398-2401.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C21H22N2)]

  • Mr = 432.24

  • Monoclinic, P 21 /n

  • a = 7.4976 (5) Å

  • b = 16.1594 (8) Å

  • c = 16.6238 (10) Å

  • β = 91.531 (2)°

  • V = 2013.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 193 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.729, Tmax = 0.806

  • 23596 measured reflections

  • 5826 independent reflections

  • 4806 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.09

  • 5826 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.0368 (13)
Co1—N2 2.0392 (13)
Co1—Cl1 2.2399 (5)
Co1—Cl2 2.2559 (5)
N1—Co1—N2 93.21 (5)
N1—Co1—Cl1 117.36 (4)
N2—Co1—Cl1 118.07 (4)
N1—Co1—Cl2 106.31 (4)
N2—Co1—Cl2 106.71 (4)
Cl1—Co1—Cl2 112.965 (19)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes with Schiff base ligands have attracted substantial interest for many years (Yamada, 1999). Cinnamaldehyde and its substituted derivatives condense with diamines to supply a range of Schiff base compounds; a small number of such bis(cinnamaldehyde)ethylenediimine ligands have been used to prepare adducts with transition metals. Among such complexes whose structures have been described are, for example, the copper(I) iodide (Habibi et al., 2007a), (triphenylphosphine)(halogen/pseudohalogeno)- copper(I) (Habibi et al., 2007b), copper(I) perchlorate (Meghdadi et al., 2002), and the cobalt(II) chloride, cobalt(II) bromide and nickel bromide (Amirnasr et al., 2003) adducts. The title complex, (I), was prepared by the reaction of CoCl2 with the bidentate ligand N,N'-bis[(E)-3-phenylprop-2-en-1-ylidene]propane-1,3-diamine (ca2pn). The molecular structure of complex (I) and the ORTEP structure are shown in Fig. 1. The metal centre has a tetrahedral coordination which shows signficant distortion, mainly due to the presence of the six-membered chelate ring (Table 1): the endocyclic N1—Co1—N2 angle is much narrower than the ideal tetrahedral angle of 109.5° whereas the opposite Cl1—Co1—Cl2 angle is much wider than the ideal tetrahedral angle. The Co1—Cl1 and Co1—Cl2 bond lengths are in good agreement with Co—Cl distances in other tetrahedral cobalt complexes, e.g. 2.229 (3) Å in Co(ethylenedimorpholine) Cl2 (Scheidt et al., 1969), and 2.2434 (8) and 2.2266 (8) Å in Co[N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)- aminobenzene]Cl2 (Blonk et al., 1985). π-Conjugation within the azadiene fragments is consistent with the observed pattern of C—C bond distances; the predominantly double C7=C8 and C14=C15 bonds are substantially shorter than the C8—C9 and C13—C14 bonds, which have a significant π-component; the latter bonds in their turn are much shorter than the single C10—C11 and C11—C12 bonds in the propylene bridge.

Related literature top

For transition metal complexes with Schiff base ligands, see: Yamada (1999). For related structures, see: Amirnasr et al. (2003); Blonk et al. (1985); Habibi et al. (2007a,b); Meghdadi et al. (2002); Scheidt et al. (1969).

Experimental top

The bidentate Schiff base ligand of N, N'-bis((E)-3-phenyl-propenylidene)-1,3-diaminopropane was synthesized by the condensation reaction of 2 mmol of (E)-3-phenypropenal and 1 mmol 1,3-diaminopropane in 10 ml dichloromethane in an ice bath for 1 h. The solution then was added drop wise to a solution of 1 mmol anhydrous CoCl2 in 10 ml dichloromethane under nitrogen atmosphere. The mixture was stirred for3 h and then filtered. To the filtrate, 20 ml chloroform was added and kept overnight. The crystals suitable for X-ray were filtered off and washed with chloroform (68% yield). Elemental analysis for C21H22Cl2CoN2%: Calcd.: C, 58.35; H, 5.13; N, 6.48; Found: C, 58.31; H, 5.11; N, 6.42.

Refinement top

All H atoms were placed in calculated positions and refined using a riding-model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
{N,N'-Bis[(E)-3-phenylprop-2-en-1-ylidene]propane- 1,3-diamine-κ2N,N']dichloridocobalt(II) top
Crystal data top
[CoCl2(C21H22N2)]F(000) = 892
Mr = 432.24Dx = 1.426 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.4976 (5) ÅCell parameters from 16882 reflections
b = 16.1594 (8) Åθ = 3.0–29.9°
c = 16.6238 (10) ŵ = 1.13 mm1
β = 91.531 (2)°T = 193 K
V = 2013.4 (2) Å3Cubic, green
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5826 independent reflections
Radiation source: fine-focus sealed tube4806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.00 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2222
Tmin = 0.729, Tmax = 0.806l = 2323
23596 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5035P]
where P = (Fo2 + 2Fc2)/3
5826 reflections(Δ/σ)max = 0.002
236 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[CoCl2(C21H22N2)]V = 2013.4 (2) Å3
Mr = 432.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4976 (5) ŵ = 1.13 mm1
b = 16.1594 (8) ÅT = 193 K
c = 16.6238 (10) Å0.30 × 0.30 × 0.20 mm
β = 91.531 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5826 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4806 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.806Rint = 0.034
23596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.09Δρmax = 0.53 e Å3
5826 reflectionsΔρmin = 0.46 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25070 (3)0.193360 (13)0.243448 (12)0.02719 (7)
Cl10.28692 (6)0.05592 (2)0.25023 (2)0.03655 (10)
Cl20.49842 (6)0.26032 (3)0.20514 (3)0.03852 (11)
N10.04670 (18)0.23684 (8)0.17195 (8)0.0291 (3)
N20.16292 (18)0.25318 (8)0.34289 (8)0.0291 (3)
C10.2001 (2)0.01609 (10)0.05017 (9)0.0304 (3)
C20.1150 (2)0.07521 (11)0.09975 (11)0.0377 (4)
H20.04480.05780.14510.045*
C30.1329 (3)0.15844 (12)0.08302 (12)0.0426 (4)
H30.07450.19810.11670.051*
C40.2360 (3)0.18448 (11)0.01710 (12)0.0419 (4)
H40.24880.24190.00630.050*
C50.3203 (2)0.12722 (10)0.03290 (11)0.0364 (4)
H50.39000.14520.07810.044*
C60.3020 (2)0.04375 (10)0.01645 (10)0.0330 (3)
H60.35950.00450.05090.040*
C70.1865 (2)0.07272 (11)0.06595 (10)0.0325 (3)
H70.26800.10760.03730.039*
C80.0703 (2)0.10972 (10)0.11696 (9)0.0304 (3)
H80.01220.07680.14730.037*
C90.0678 (2)0.19798 (10)0.12681 (10)0.0320 (3)
H90.15580.22960.09840.038*
C100.0290 (2)0.32742 (10)0.17794 (10)0.0342 (3)
H10A0.06200.34690.13800.041*
H10B0.14400.35380.16530.041*
C110.0252 (2)0.35316 (10)0.26220 (10)0.0340 (3)
H11A0.05950.41230.26080.041*
H11B0.13210.32100.27670.041*
C120.1177 (2)0.34122 (9)0.32822 (10)0.0342 (3)
H12A0.22690.37120.31310.041*
H12B0.07530.36590.37880.041*
C130.1347 (2)0.22441 (10)0.41378 (9)0.0299 (3)
H130.08190.26040.45150.036*
C140.1777 (2)0.14149 (10)0.43997 (9)0.0301 (3)
H140.23220.10410.40410.036*
C150.1409 (2)0.11698 (10)0.51492 (10)0.0299 (3)
H150.07830.15500.54740.036*
C160.1881 (2)0.03716 (10)0.55142 (9)0.0303 (3)
C170.1433 (3)0.02236 (11)0.63139 (10)0.0383 (4)
H170.07570.06210.65960.046*
C180.1975 (3)0.05030 (12)0.66951 (12)0.0470 (5)
H180.16630.06000.72370.056*
C190.2957 (3)0.10810 (12)0.62942 (13)0.0460 (5)
H190.33430.15720.65610.055*
C200.3386 (2)0.09457 (11)0.54975 (13)0.0420 (4)
H200.40570.13480.52190.050*
C210.2844 (2)0.02314 (10)0.51072 (11)0.0345 (3)
H210.31260.01490.45590.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02769 (12)0.02684 (12)0.02693 (12)0.00036 (7)0.00153 (8)0.00003 (8)
Cl10.0445 (2)0.02843 (19)0.0363 (2)0.00604 (15)0.00552 (17)0.00140 (15)
Cl20.0328 (2)0.0447 (2)0.0381 (2)0.00778 (17)0.00149 (16)0.00277 (18)
N10.0300 (7)0.0313 (6)0.0258 (6)0.0031 (5)0.0003 (5)0.0008 (5)
N20.0313 (7)0.0270 (6)0.0287 (6)0.0016 (5)0.0015 (5)0.0009 (5)
C10.0258 (7)0.0354 (8)0.0300 (7)0.0005 (6)0.0016 (6)0.0011 (6)
C20.0357 (9)0.0430 (9)0.0344 (8)0.0002 (7)0.0020 (7)0.0037 (7)
C30.0413 (10)0.0407 (10)0.0461 (10)0.0037 (8)0.0050 (8)0.0120 (8)
C40.0403 (10)0.0341 (9)0.0518 (11)0.0037 (7)0.0119 (8)0.0011 (8)
C50.0299 (8)0.0413 (9)0.0381 (9)0.0053 (7)0.0050 (7)0.0070 (7)
C60.0288 (8)0.0394 (8)0.0308 (8)0.0007 (6)0.0003 (6)0.0001 (7)
C70.0285 (8)0.0363 (8)0.0324 (8)0.0030 (6)0.0030 (6)0.0008 (7)
C80.0274 (7)0.0356 (8)0.0283 (7)0.0021 (6)0.0002 (6)0.0009 (6)
C90.0282 (8)0.0388 (9)0.0288 (7)0.0036 (6)0.0016 (6)0.0010 (6)
C100.0386 (9)0.0302 (8)0.0335 (8)0.0038 (7)0.0050 (7)0.0028 (7)
C110.0364 (9)0.0265 (7)0.0390 (9)0.0030 (6)0.0007 (7)0.0016 (7)
C120.0450 (10)0.0237 (7)0.0339 (8)0.0014 (6)0.0025 (7)0.0018 (6)
C130.0297 (8)0.0315 (8)0.0285 (7)0.0010 (6)0.0012 (6)0.0030 (6)
C140.0307 (8)0.0319 (7)0.0277 (7)0.0000 (6)0.0007 (6)0.0016 (6)
C150.0288 (8)0.0325 (8)0.0282 (7)0.0005 (6)0.0016 (6)0.0024 (6)
C160.0273 (8)0.0332 (8)0.0302 (7)0.0047 (6)0.0041 (6)0.0007 (6)
C170.0447 (10)0.0380 (9)0.0322 (8)0.0032 (7)0.0010 (7)0.0012 (7)
C180.0596 (13)0.0467 (11)0.0343 (9)0.0085 (9)0.0065 (8)0.0105 (8)
C190.0425 (10)0.0384 (9)0.0563 (12)0.0044 (8)0.0131 (9)0.0140 (9)
C200.0330 (9)0.0337 (9)0.0593 (12)0.0006 (7)0.0008 (8)0.0020 (8)
C210.0310 (8)0.0341 (8)0.0384 (9)0.0038 (6)0.0015 (6)0.0022 (7)
Geometric parameters (Å, º) top
Co1—N12.0368 (13)C10—C111.527 (2)
Co1—N22.0392 (13)C10—H10A0.9900
Co1—Cl12.2399 (5)C10—H10B0.9900
Co1—Cl22.2559 (5)C11—C121.525 (2)
N1—C91.289 (2)C11—H11A0.9900
N1—C101.473 (2)C11—H11B0.9900
N2—C131.289 (2)C12—H12A0.9900
N2—C121.481 (2)C12—H12B0.9900
C1—C61.402 (2)C13—C141.443 (2)
C1—C21.404 (2)C13—H130.9500
C1—C71.462 (2)C14—C151.343 (2)
C2—C31.379 (3)C14—H140.9500
C2—H20.9500C15—C161.465 (2)
C3—C41.389 (3)C15—H150.9500
C3—H30.9500C16—C211.398 (2)
C4—C51.385 (3)C16—C171.401 (2)
C4—H40.9500C17—C181.390 (2)
C5—C61.382 (2)C17—H170.9500
C5—H50.9500C18—C191.373 (3)
C6—H60.9500C18—H180.9500
C7—C81.340 (2)C19—C201.389 (3)
C7—H70.9500C19—H190.9500
C8—C91.436 (2)C20—C211.380 (2)
C8—H80.9500C20—H200.9500
C9—H90.9500C21—H210.9500
N1—Co1—N293.21 (5)N1—C10—H10B109.4
N1—Co1—Cl1117.36 (4)C11—C10—H10B109.4
N2—Co1—Cl1118.07 (4)H10A—C10—H10B108.0
N1—Co1—Cl2106.31 (4)C12—C11—C10115.27 (14)
N2—Co1—Cl2106.71 (4)C12—C11—H11A108.5
Cl1—Co1—Cl2112.965 (19)C10—C11—H11A108.5
C9—N1—C10117.61 (13)C12—C11—H11B108.5
C9—N1—Co1130.55 (11)C10—C11—H11B108.5
C10—N1—Co1111.78 (10)H11A—C11—H11B107.5
C13—N2—C12117.02 (13)N2—C12—C11113.16 (13)
C13—N2—Co1129.36 (11)N2—C12—H12A108.9
C12—N2—Co1113.53 (10)C11—C12—H12A108.9
C6—C1—C2118.44 (15)N2—C12—H12B108.9
C6—C1—C7119.26 (14)C11—C12—H12B108.9
C2—C1—C7122.30 (15)H12A—C12—H12B107.8
C3—C2—C1120.34 (16)N2—C13—C14124.76 (15)
C3—C2—H2119.8N2—C13—H13117.6
C1—C2—H2119.8C14—C13—H13117.6
C2—C3—C4120.22 (17)C15—C14—C13120.29 (15)
C2—C3—H3119.9C15—C14—H14119.9
C4—C3—H3119.9C13—C14—H14119.9
C5—C4—C3120.42 (17)C14—C15—C16126.20 (15)
C5—C4—H4119.8C14—C15—H15116.9
C3—C4—H4119.8C16—C15—H15116.9
C6—C5—C4119.47 (16)C21—C16—C17118.72 (16)
C6—C5—H5120.3C21—C16—C15122.38 (15)
C4—C5—H5120.3C17—C16—C15118.82 (15)
C5—C6—C1121.10 (16)C18—C17—C16120.16 (18)
C5—C6—H6119.4C18—C17—H17119.9
C1—C6—H6119.4C16—C17—H17119.9
C8—C7—C1126.34 (15)C19—C18—C17120.49 (19)
C8—C7—H7116.8C19—C18—H18119.8
C1—C7—H7116.8C17—C18—H18119.8
C7—C8—C9121.45 (15)C18—C19—C20119.78 (17)
C7—C8—H8119.3C18—C19—H19120.1
C9—C8—H8119.3C20—C19—H19120.1
N1—C9—C8123.85 (15)C21—C20—C19120.49 (18)
N1—C9—H9118.1C21—C20—H20119.8
C8—C9—H9118.1C19—C20—H20119.8
N1—C10—C11111.07 (13)C20—C21—C16120.33 (17)
N1—C10—H10A109.4C20—C21—H21119.8
C11—C10—H10A109.4C16—C21—H21119.8
N2—Co1—N1—C9125.65 (15)C10—N1—C9—C8178.17 (15)
Cl1—Co1—N1—C91.63 (16)Co1—N1—C9—C81.2 (3)
Cl2—Co1—N1—C9125.90 (14)C7—C8—C9—N1176.41 (17)
N2—Co1—N1—C1051.43 (11)C9—N1—C10—C11112.10 (16)
Cl1—Co1—N1—C10175.45 (9)Co1—N1—C10—C1165.40 (15)
Cl2—Co1—N1—C1057.02 (11)N1—C10—C11—C1269.65 (18)
N1—Co1—N2—C13128.77 (14)C13—N2—C12—C11118.87 (16)
Cl1—Co1—N2—C135.30 (16)Co1—N2—C12—C1158.15 (16)
Cl2—Co1—N2—C13123.14 (14)C10—C11—C12—N265.56 (19)
N1—Co1—N2—C1247.80 (11)C12—N2—C13—C14177.22 (14)
Cl1—Co1—N2—C12171.27 (9)Co1—N2—C13—C146.3 (2)
Cl2—Co1—N2—C1260.29 (11)N2—C13—C14—C15179.13 (16)
C6—C1—C2—C30.3 (3)C13—C14—C15—C16175.37 (14)
C7—C1—C2—C3179.37 (17)C14—C15—C16—C211.8 (3)
C1—C2—C3—C40.3 (3)C14—C15—C16—C17178.41 (16)
C2—C3—C4—C50.7 (3)C21—C16—C17—C181.4 (3)
C3—C4—C5—C60.4 (3)C15—C16—C17—C18175.39 (16)
C4—C5—C6—C10.2 (3)C16—C17—C18—C190.2 (3)
C2—C1—C6—C50.6 (2)C17—C18—C19—C201.2 (3)
C7—C1—C6—C5179.12 (15)C18—C19—C20—C210.5 (3)
C6—C1—C7—C8166.72 (17)C19—C20—C21—C161.1 (3)
C2—C1—C7—C813.6 (3)C17—C16—C21—C202.0 (2)
C1—C7—C8—C9179.17 (16)C15—C16—C21—C20174.62 (16)

Experimental details

Crystal data
Chemical formula[CoCl2(C21H22N2)]
Mr432.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)7.4976 (5), 16.1594 (8), 16.6238 (10)
β (°) 91.531 (2)
V3)2013.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.729, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
23596, 5826, 4806
Rint0.034
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.09
No. of reflections5826
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.46

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Co1—N12.0368 (13)Co1—Cl12.2399 (5)
Co1—N22.0392 (13)Co1—Cl22.2559 (5)
N1—Co1—N293.21 (5)N1—Co1—Cl2106.31 (4)
N1—Co1—Cl1117.36 (4)N2—Co1—Cl2106.71 (4)
N2—Co1—Cl1118.07 (4)Cl1—Co1—Cl2112.965 (19)
 

Acknowledgements

Partial support of this work by Yasouj University is acknowledged.

References

First citationAmirnasr, M., Schenk, K. J., Salavati, M., Dehghanpour, S., Taeb, A. & Tadjarodi, A. (2003). J. Coord. Chem. 56, 231–243.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlonk, H. I., Driessen, W. L. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1699–1704.  CSD CrossRef Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007a). Acta Cryst. E63, m2472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Lalegani, A., Mokhtari, R. & Suzuki, T. (2007b). Acta Cryst. E63, m2580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMeghdadi, S., Amirnasr, M., Schenk, K. J. & Dehghanpour, S. (2002). Helv. Chim. Acta, 85, 2807–2816.  CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationScheidt, W. R., Hanson, J. C. & Rasmussen, P. G. (1969). Inorg. Chem. 8, 2398–2401.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190, 537-555.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds