organic compounds
2-(Prop-2-enyl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide
aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com
In the title compound, C10H9NO3S, the benzisothiazole group is almost planar (with a maximum deviation of 1.61 Å). The is stabilized by weak intermolecular C—H⋯O hydrogen bonds, forming a chain of molecules along b.
Related literature
For the synthesis of benzothiazine and benzisothiazol derivatives, see: Zia-ur-Rehman, Anwar & Ahmad (2006); Zia-ur-Rehman, Anwar, Ahmad & Siddiqui (2006); Siddiqui et al. (2007) Zia-ur-Rehman et al. (2009). For the biological activity of benzisothiazols, see: Kapui et al. (2003); Liang et al. (2006). For related structures, see: Siddiqui, Ahmad, Siddiqui et al. (2007a,b,c).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536809016328/bt2942sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809016328/bt2942Isup2.hkl
A mixture of 2,3-dihydro-1,2-benzisothiazol-3-one-1,1-dioxide (1.83 g, 10.0 mmoles), dimethyl formamide (5.0 ml) and allyl bromide (1.20 g, 10.0 mmoles) was stirred for a period of one hour at 90°C. Contents were cooled to room temperature; poured over crushed ice to get white coloured precipitates which were filtered, washed and dried. Crystallization of the white precipitate in methanol afforded suitable crystals for X-ray studies.
H atoms were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).C10H9NO3S | Z = 2 |
Mr = 223.24 | F(000) = 232 |
Triclinic, P1 | Dx = 1.429 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2169 (8) Å | Cell parameters from 2362 reflections |
b = 7.8347 (7) Å | θ = 3.1–27.3° |
c = 10.3849 (12) Å | µ = 0.30 mm−1 |
α = 105.530 (3)° | T = 296 K |
β = 91.586 (3)° | Needles, colourless |
γ = 112.047 (3)° | 0.37 × 0.26 × 0.18 mm |
V = 518.95 (10) Å3 |
Bruker APEXII CCD area-detector diffractometer | 1728 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 27.5°, θmin = 2.9° |
ϕ and ω scans | h = −9→9 |
5460 measured reflections | k = −10→6 |
2342 independent reflections | l = −11→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.1101P] where P = (Fo2 + 2Fc2)/3 |
2342 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C10H9NO3S | γ = 112.047 (3)° |
Mr = 223.24 | V = 518.95 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2169 (8) Å | Mo Kα radiation |
b = 7.8347 (7) Å | µ = 0.30 mm−1 |
c = 10.3849 (12) Å | T = 296 K |
α = 105.530 (3)° | 0.37 × 0.26 × 0.18 mm |
β = 91.586 (3)° |
Bruker APEXII CCD area-detector diffractometer | 1728 reflections with I > 2σ(I) |
5460 measured reflections | Rint = 0.022 |
2342 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2342 reflections | Δρmin = −0.26 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.39784 (8) | 0.35030 (7) | 0.26041 (5) | 0.0536 (2) | |
O1 | 0.2640 (2) | 0.6659 (2) | 0.09710 (17) | 0.0646 (4) | |
O2 | 0.6073 (2) | 0.3953 (2) | 0.29080 (18) | 0.0759 (5) | |
O3 | 0.2677 (3) | 0.2648 (2) | 0.34679 (16) | 0.0726 (5) | |
N1 | 0.3652 (3) | 0.5452 (2) | 0.25013 (17) | 0.0515 (4) | |
C1 | 0.3079 (3) | 0.2289 (3) | 0.0897 (2) | 0.0450 (4) | |
C2 | 0.2602 (3) | 0.3453 (3) | 0.0270 (2) | 0.0431 (4) | |
C3 | 0.1889 (3) | 0.2789 (3) | −0.1090 (2) | 0.0533 (5) | |
H3 | 0.1557 | 0.3555 | −0.1521 | 0.064* | |
C4 | 0.1684 (3) | 0.0951 (3) | −0.1791 (2) | 0.0635 (6) | |
H4 | 0.1223 | 0.0479 | −0.2713 | 0.076* | |
C5 | 0.2147 (3) | −0.0205 (3) | −0.1155 (3) | 0.0645 (6) | |
H5 | 0.1983 | −0.1442 | −0.1656 | 0.077* | |
C6 | 0.2844 (3) | 0.0433 (3) | 0.0204 (2) | 0.0572 (6) | |
H6 | 0.3145 | −0.0347 | 0.0636 | 0.069* | |
C7 | 0.2931 (3) | 0.5357 (3) | 0.1224 (2) | 0.0463 (5) | |
C8 | 0.4052 (4) | 0.7114 (3) | 0.3697 (2) | 0.0642 (6) | |
H8A | 0.4591 | 0.8293 | 0.3443 | 0.077* | |
H8B | 0.5060 | 0.7163 | 0.4359 | 0.077* | |
C9 | 0.2176 (5) | 0.6993 (4) | 0.4312 (3) | 0.0823 (8) | |
H9 | 0.1606 | 0.5989 | 0.4683 | 0.099* | |
C10 | 0.1299 (5) | 0.8116 (5) | 0.4373 (3) | 0.0945 (9) | |
H10A | 0.1814 | 0.9141 | 0.4015 | 0.113* | |
H10B | 0.0134 | 0.7926 | 0.4777 | 0.113* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0584 (3) | 0.0538 (3) | 0.0598 (4) | 0.0253 (2) | 0.0088 (2) | 0.0306 (3) |
O1 | 0.0772 (10) | 0.0506 (8) | 0.0818 (11) | 0.0342 (7) | 0.0108 (8) | 0.0319 (8) |
O2 | 0.0616 (10) | 0.0850 (11) | 0.0897 (12) | 0.0328 (8) | −0.0054 (9) | 0.0362 (10) |
O3 | 0.0904 (12) | 0.0726 (10) | 0.0647 (10) | 0.0278 (9) | 0.0214 (9) | 0.0418 (9) |
N1 | 0.0612 (10) | 0.0455 (9) | 0.0537 (10) | 0.0248 (8) | 0.0095 (8) | 0.0187 (8) |
C1 | 0.0420 (10) | 0.0435 (9) | 0.0588 (12) | 0.0201 (8) | 0.0149 (9) | 0.0249 (9) |
C2 | 0.0391 (10) | 0.0428 (9) | 0.0554 (11) | 0.0178 (8) | 0.0139 (8) | 0.0243 (9) |
C3 | 0.0468 (11) | 0.0607 (12) | 0.0572 (13) | 0.0207 (9) | 0.0085 (9) | 0.0262 (10) |
C4 | 0.0540 (13) | 0.0652 (14) | 0.0616 (14) | 0.0180 (11) | 0.0098 (11) | 0.0117 (11) |
C5 | 0.0568 (13) | 0.0470 (12) | 0.0819 (17) | 0.0195 (10) | 0.0182 (12) | 0.0080 (11) |
C6 | 0.0514 (12) | 0.0468 (11) | 0.0845 (17) | 0.0249 (9) | 0.0194 (11) | 0.0285 (11) |
C7 | 0.0452 (10) | 0.0429 (10) | 0.0600 (12) | 0.0198 (8) | 0.0134 (9) | 0.0259 (9) |
C8 | 0.0702 (15) | 0.0559 (12) | 0.0604 (14) | 0.0234 (11) | 0.0031 (11) | 0.0108 (11) |
C9 | 0.111 (2) | 0.0722 (16) | 0.0749 (18) | 0.0451 (16) | 0.0323 (16) | 0.0258 (14) |
C10 | 0.109 (2) | 0.098 (2) | 0.0787 (19) | 0.0495 (19) | 0.0176 (17) | 0.0177 (17) |
S1—O2 | 1.4220 (16) | C4—C5 | 1.379 (3) |
S1—O3 | 1.4253 (15) | C4—H4 | 0.9300 |
S1—N1 | 1.6596 (16) | C5—C6 | 1.374 (3) |
S1—C1 | 1.743 (2) | C5—H5 | 0.9300 |
O1—C7 | 1.206 (2) | C6—H6 | 0.9300 |
N1—C7 | 1.385 (3) | C8—C9 | 1.495 (3) |
N1—C8 | 1.467 (3) | C8—H8A | 0.9700 |
C1—C6 | 1.382 (3) | C8—H8B | 0.9700 |
C1—C2 | 1.384 (2) | C9—C10 | 1.253 (4) |
C2—C3 | 1.376 (3) | C9—H9 | 0.9300 |
C2—C7 | 1.481 (3) | C10—H10A | 0.9300 |
C3—C4 | 1.378 (3) | C10—H10B | 0.9300 |
C3—H3 | 0.9300 | ||
O2—S1—O3 | 117.16 (10) | C6—C5—C4 | 121.4 (2) |
O2—S1—N1 | 109.80 (9) | C6—C5—H5 | 119.3 |
O3—S1—N1 | 109.80 (9) | C4—C5—H5 | 119.3 |
O2—S1—C1 | 111.86 (10) | C5—C6—C1 | 116.9 (2) |
O3—S1—C1 | 112.76 (9) | C5—C6—H6 | 121.5 |
N1—S1—C1 | 92.73 (8) | C1—C6—H6 | 121.5 |
C7—N1—C8 | 123.33 (17) | O1—C7—N1 | 123.46 (19) |
C7—N1—S1 | 115.04 (13) | O1—C7—C2 | 127.23 (19) |
C8—N1—S1 | 121.60 (14) | N1—C7—C2 | 109.31 (15) |
C6—C1—C2 | 122.1 (2) | N1—C8—C9 | 111.41 (19) |
C6—C1—S1 | 127.33 (16) | N1—C8—H8A | 109.3 |
C2—C1—S1 | 110.60 (14) | C9—C8—H8A | 109.3 |
C3—C2—C1 | 120.34 (18) | N1—C8—H8B | 109.3 |
C3—C2—C7 | 127.38 (17) | C9—C8—H8B | 109.3 |
C1—C2—C7 | 112.27 (17) | H8A—C8—H8B | 108.0 |
C2—C3—C4 | 117.8 (2) | C10—C9—C8 | 126.1 (3) |
C2—C3—H3 | 121.1 | C10—C9—H9 | 116.9 |
C4—C3—H3 | 121.1 | C8—C9—H9 | 116.9 |
C3—C4—C5 | 121.5 (2) | C9—C10—H10A | 120.0 |
C3—C4—H4 | 119.3 | C9—C10—H10B | 120.0 |
C5—C4—H4 | 119.3 | H10A—C10—H10B | 120.0 |
O2—S1—N1—C7 | 112.66 (16) | C7—C2—C3—C4 | −179.51 (17) |
O3—S1—N1—C7 | −117.16 (15) | C2—C3—C4—C5 | 0.9 (3) |
C1—S1—N1—C7 | −1.76 (15) | C3—C4—C5—C6 | −0.4 (3) |
O2—S1—N1—C8 | −69.00 (18) | C4—C5—C6—C1 | −0.6 (3) |
O3—S1—N1—C8 | 61.18 (18) | C2—C1—C6—C5 | 1.2 (3) |
C1—S1—N1—C8 | 176.58 (16) | S1—C1—C6—C5 | −178.53 (15) |
O2—S1—C1—C6 | 69.07 (19) | C8—N1—C7—O1 | 2.9 (3) |
O3—S1—C1—C6 | −65.5 (2) | S1—N1—C7—O1 | −178.81 (15) |
N1—S1—C1—C6 | −178.31 (17) | C8—N1—C7—C2 | −177.24 (16) |
O2—S1—C1—C2 | −110.65 (14) | S1—N1—C7—C2 | 1.1 (2) |
O3—S1—C1—C2 | 114.77 (14) | C3—C2—C7—O1 | −0.5 (3) |
N1—S1—C1—C2 | 1.96 (14) | C1—C2—C7—O1 | −179.66 (19) |
C6—C1—C2—C3 | −0.7 (3) | C3—C2—C7—N1 | 179.65 (18) |
S1—C1—C2—C3 | 179.07 (14) | C1—C2—C7—N1 | 0.5 (2) |
C6—C1—C2—C7 | 178.58 (16) | C7—N1—C8—C9 | 84.2 (3) |
S1—C1—C2—C7 | −1.68 (19) | S1—N1—C8—C9 | −94.0 (2) |
C1—C2—C3—C4 | −0.4 (3) | N1—C8—C9—C10 | −114.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.93 | 2.36 | 3.216 (3) | 153 |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C10H9NO3S |
Mr | 223.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.2169 (8), 7.8347 (7), 10.3849 (12) |
α, β, γ (°) | 105.530 (3), 91.586 (3), 112.047 (3) |
V (Å3) | 518.95 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.37 × 0.26 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5460, 2342, 1728 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.118, 1.06 |
No. of reflections | 2342 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.26 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.9300 | 2.3600 | 3.216 (3) | 153.00 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer. MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under PIN 042-120607-PS2–183.
References
Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1–9. Web of Science CrossRef PubMed Google Scholar
Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun. 37, 767–773. Web of Science CrossRef CAS Google Scholar
Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2006). Bull. Korean Chem. Soc. 26, 1771–1775. Google Scholar
Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178. Web of Science PubMed CAS Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Besides being used as a sweetener, saccharin and its various derivatives are well known for their different type of biological activities e.g., it has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Kapui et al., 2003; Liang et al., 2006). N-alkyl derivatives of saccharin have been successfully transformed to non-steroidal anti-inflammatory drugs e.g., piroxicam and meloxicam.
As part of a research program synthesizing various bioactive benzothiazines (Zia-ur-Rehman et al., 2009; Siddiqui et al., 2007), we have in addition, worked on the synthesis of benzisothiazole derivatives. We herein report the crystal structure of the title compound (Scheme and figure 1). The benzisothiazole moiety is exactly planar. The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui, Ahmad, Siddiqui et al., 2007a; Siddiqui, Ahmad, Siddiqui et al., 2007b; Siddiqui, Ahmad, Siddiqui et al., 2007c). Each molecule is linked to its adjacent one through C—H···O contacts forming a chain of molecules along b (Figure 2).