metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipyridinium tri­bromido­chloridobis(4-chloro­phen­yl)stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 May 2009; accepted 4 May 2009; online 14 May 2009)

The tin atom in the substituted ammonium stannate(IV), (C5H6N)2[SnBr3(C6H4Cl)2Cl], lies on a center of symmetry in a distorted octa­hedral coordination geometry. Each independent halogen site is occupied by bromine and chlorine anions in an approximate 3:1 ratio. The pyridinium cation forms a hydrogen bond to only one of the halogen atoms.

Related literature

For bis­(4-dimethyl­amino­pyridinium) tetra­halido­diorgano­stannates, see: Lo & Ng (2008a[Lo, K. M. & Ng, S. W. (2008a). Acta Cryst. E64, m800.],b[Lo, K. M. & Ng, S. W. (2008b). Acta Cryst. E64, m834.]); Yap et al. (2008[Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)2[SnBr3(C6H4Cl)2Cl]

  • Mr = 777.17

  • Monoclinic, C 2/c

  • a = 11.5130 (2) Å

  • b = 11.7139 (2) Å

  • c = 18.7748 (3) Å

  • β = 93.230 (1)°

  • V = 2527.99 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.08 mm−1

  • T = 100 K

  • 0.27 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.327, Tmax = 0.529 (expected range = 0.298–0.482)

  • 11728 measured reflections

  • 2903 independent reflections

  • 2668 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.047

  • S = 1.02

  • 2903 reflections

  • 146 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å) (X = Br, Cl)

Sn1—C1 2.149 (2)
Sn1—X1 2.7166 (2)
Sn1—X2 2.7060 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For bis(4-dimethylaminopyridinium) tetrahalidodiorganostannates, see: Lo & Ng (2008a,b); Yap et al. (2008).

Experimental top

Bis(4-chlorophenyl)tin dichloride (0.40 g, 1 mol) and pyridine hydrobromide perbromide (0.64 g, 2 mmol) were heated in chloroform for 3 h. Crystals separated from the cool solution after a day.

Refinement top

Hydrogen atoms were placed in calculated positions (C—H 0.95, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N).

Each of the two independent tin-bound halogen atoms is a mixture of chlorine and bromine; as the total occupancy of chlorine refined to nearly 0.5 and that of bromine to nearly 1.5, these values were fixed as 0.5 and 1.5. Furthermore, the different halogen atoms sharing the same site were constrained to have the same coordinates and the same anisotropic displacement parameters. The final difference Fourier map did not have large peaks/deep holes near the disordered atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. 70% Probability anisotropic displacement ellipsoid plot of the ion-pair 2(C5H6 N) [SnBr3Cl(C6H4Cl)2]. Hydrogen atoms are drawn as spheres of arbitrary radius. Dashed lines denote hydrogen bonds. The tin-bound halogen atoms are disordered.
Dipyridinium tribromidochloridobis(4-chlorophenyl)stannate(IV) top
Crystal data top
(C5H6N)2[SnBr3(C6H4Cl)2Cl]F(000) = 1488
Mr = 777.17Dx = 2.042 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6664 reflections
a = 11.5130 (2) Åθ = 2.5–28.3°
b = 11.7139 (2) ŵ = 6.08 mm1
c = 18.7748 (3) ÅT = 100 K
β = 93.230 (1)°Prism, brown
V = 2527.99 (7) Å30.27 × 0.19 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2903 independent reflections
Radiation source: fine-focus sealed tube2668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.327, Tmax = 0.529k = 1515
11728 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0246P)2 + 3.4843P]
where P = (Fo2 + 2Fc2)/3
2903 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.39 e Å3
4 restraintsΔρmin = 0.84 e Å3
Crystal data top
(C5H6N)2[SnBr3(C6H4Cl)2Cl]V = 2527.99 (7) Å3
Mr = 777.17Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.5130 (2) ŵ = 6.08 mm1
b = 11.7139 (2) ÅT = 100 K
c = 18.7748 (3) Å0.27 × 0.19 × 0.12 mm
β = 93.230 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2903 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2668 reflections with I > 2σ(I)
Tmin = 0.327, Tmax = 0.529Rint = 0.022
11728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0184 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2903 reflectionsΔρmin = 0.84 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.01196 (6)
Br10.308690 (19)0.509165 (19)0.578153 (12)0.01383 (8)0.7365 (11)
Br20.551744 (19)0.288797 (18)0.550827 (12)0.01450 (7)0.7635 (11)
Cl1'0.308690 (19)0.509165 (19)0.578153 (12)0.01383 (8)0.2635 (11)
Cl2'0.551744 (19)0.288797 (18)0.550827 (12)0.01450 (7)0.2365 (11)
Cl10.83429 (5)0.71755 (5)0.76748 (3)0.02688 (12)
N10.15868 (16)0.59124 (16)0.43101 (10)0.0217 (4)
H10.22060.58910.46070.026*
C10.60325 (16)0.57206 (16)0.58772 (10)0.0129 (4)
C20.60187 (18)0.52532 (17)0.65598 (11)0.0165 (4)
H20.55220.46260.66440.020*
C30.67258 (18)0.56972 (18)0.71184 (11)0.0188 (4)
H30.67160.53790.75840.023*
C40.74442 (17)0.66121 (18)0.69830 (11)0.0182 (4)
C50.74654 (17)0.70998 (17)0.63157 (11)0.0171 (4)
H50.79610.77290.62340.021*
C60.67469 (17)0.66515 (17)0.57641 (11)0.0155 (4)
H60.67450.69870.53030.019*
C70.0884 (2)0.50083 (18)0.42776 (13)0.0225 (5)
H70.10480.43660.45750.027*
C80.0077 (2)0.50100 (18)0.38125 (13)0.0235 (5)
H80.05790.43660.37770.028*
C90.03042 (19)0.5968 (2)0.33953 (12)0.0238 (5)
H90.09710.59880.30740.029*
C100.0440 (2)0.68937 (19)0.34465 (12)0.0231 (5)
H100.02900.75520.31610.028*
C110.13982 (19)0.68517 (19)0.39135 (12)0.0224 (5)
H110.19200.74790.39550.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01296 (10)0.01329 (10)0.00948 (10)0.00098 (6)0.00070 (7)0.00034 (7)
Br10.01297 (12)0.01610 (12)0.01249 (13)0.00044 (8)0.00142 (9)0.00093 (8)
Br20.01749 (12)0.01242 (11)0.01334 (12)0.00098 (8)0.00136 (8)0.00188 (8)
Cl1'0.01297 (12)0.01610 (12)0.01249 (13)0.00044 (8)0.00142 (9)0.00093 (8)
Cl2'0.01749 (12)0.01242 (11)0.01334 (12)0.00098 (8)0.00136 (8)0.00188 (8)
Cl10.0254 (3)0.0349 (3)0.0193 (3)0.0073 (2)0.0073 (2)0.0056 (2)
N10.0177 (9)0.0277 (10)0.0190 (9)0.0050 (7)0.0038 (7)0.0047 (8)
C10.0126 (9)0.0155 (9)0.0103 (9)0.0020 (7)0.0011 (7)0.0014 (7)
C20.0160 (9)0.0177 (9)0.0156 (10)0.0017 (7)0.0004 (8)0.0001 (8)
C30.0221 (10)0.0222 (10)0.0119 (9)0.0010 (8)0.0016 (8)0.0022 (8)
C40.0153 (10)0.0237 (10)0.0150 (10)0.0002 (8)0.0041 (8)0.0054 (8)
C50.0155 (9)0.0170 (9)0.0188 (10)0.0028 (7)0.0002 (8)0.0013 (8)
C60.0154 (9)0.0170 (9)0.0142 (10)0.0012 (7)0.0018 (7)0.0010 (8)
C70.0251 (12)0.0223 (11)0.0204 (12)0.0064 (8)0.0055 (9)0.0023 (9)
C80.0194 (11)0.0239 (11)0.0276 (13)0.0015 (8)0.0062 (9)0.0024 (9)
C90.0173 (10)0.0332 (12)0.0204 (11)0.0049 (9)0.0028 (8)0.0028 (9)
C100.0280 (11)0.0214 (10)0.0201 (11)0.0058 (9)0.0029 (9)0.0019 (9)
C110.0251 (11)0.0196 (10)0.0225 (11)0.0018 (8)0.0034 (9)0.0048 (9)
Geometric parameters (Å, º) top
Sn1—C1i2.149 (2)C3—C41.386 (3)
Sn1—C12.149 (2)C3—H30.9500
Sn1—Br12.7166 (2)C4—C51.378 (3)
Sn1—Cl2'i2.7060 (2)C5—C61.391 (3)
Sn1—Br2i2.7060 (2)C5—H50.9500
Sn1—Br22.7060 (2)C6—H60.9500
Sn1—Cl1'i2.7166 (2)C7—C81.370 (3)
Sn1—Br1i2.7166 (2)C7—H70.9500
Cl1—C41.744 (2)C8—C91.384 (3)
N1—C71.332 (3)C8—H80.9500
N1—C111.339 (3)C9—C101.383 (3)
N1—H10.8800C9—H90.9500
C1—C61.389 (3)C10—C111.371 (3)
C1—C21.394 (3)C10—H100.9500
C2—C31.392 (3)C11—H110.9500
C2—H20.9500
C1i—Sn1—C1180.000 (1)C6—C1—Sn1119.86 (14)
C1i—Sn1—Cl2'i89.29 (5)C2—C1—Sn1121.05 (14)
C1—Sn1—Cl2'i90.71 (5)C3—C2—C1120.63 (19)
C1i—Sn1—Br2i89.29 (5)C3—C2—H2119.7
C1—Sn1—Br2i90.71 (5)C1—C2—H2119.7
Cl2'i—Sn1—Br2i0.000 (13)C4—C3—C2118.71 (19)
C1i—Sn1—Br290.71 (5)C4—C3—H3120.6
C1—Sn1—Br289.29 (5)C2—C3—H3120.6
Cl2'i—Sn1—Br2180.0C5—C4—C3121.90 (19)
Br2i—Sn1—Br2180.0C5—C4—Cl1118.68 (16)
C1i—Sn1—Cl1'i90.05 (5)C3—C4—Cl1119.41 (17)
C1—Sn1—Cl1'i89.95 (5)C4—C5—C6118.67 (19)
Cl2'i—Sn1—Cl1'i90.845 (7)C4—C5—H5120.7
Br2i—Sn1—Cl1'i90.845 (7)C6—C5—H5120.7
Br2—Sn1—Cl1'i89.155 (7)C5—C6—C1120.98 (19)
C1i—Sn1—Br1i90.05 (5)C5—C6—H6119.5
C1—Sn1—Br1i89.95 (5)C1—C6—H6119.5
Cl2'i—Sn1—Br1i90.845 (7)N1—C7—C8119.7 (2)
Br2i—Sn1—Br1i90.845 (7)N1—C7—H7120.2
Br2—Sn1—Br1i89.155 (7)C8—C7—H7120.2
Cl1'i—Sn1—Br1i0.000 (8)C7—C8—C9118.8 (2)
C1i—Sn1—Br189.95 (5)C7—C8—H8120.6
C1—Sn1—Br190.05 (5)C9—C8—H8120.6
Cl2'i—Sn1—Br189.155 (7)C8—C9—C10120.0 (2)
Br2i—Sn1—Br189.155 (7)C8—C9—H9120.0
Br2—Sn1—Br190.845 (7)C10—C9—H9120.0
Cl1'i—Sn1—Br1180.0C11—C10—C9119.3 (2)
Br1i—Sn1—Br1180.0C11—C10—H10120.3
C7—N1—C11123.26 (19)C9—C10—H10120.3
C7—N1—H1118.4N1—C11—C10119.0 (2)
C11—N1—H1118.4N1—C11—H11120.5
C6—C1—C2119.08 (18)C10—C11—H11120.5
Cl2'i—Sn1—C1—C640.72 (15)C1—C2—C3—C40.1 (3)
Br2i—Sn1—C1—C640.72 (15)C2—C3—C4—C50.9 (3)
Br2—Sn1—C1—C6139.28 (15)C2—C3—C4—Cl1179.64 (16)
Cl1'i—Sn1—C1—C650.12 (15)C3—C4—C5—C60.4 (3)
Br1i—Sn1—C1—C650.12 (15)Cl1—C4—C5—C6179.89 (15)
Br1—Sn1—C1—C6129.88 (15)C4—C5—C6—C10.9 (3)
Cl2'i—Sn1—C1—C2140.70 (15)C2—C1—C6—C51.7 (3)
Br2i—Sn1—C1—C2140.70 (15)Sn1—C1—C6—C5176.91 (15)
Br2—Sn1—C1—C239.30 (15)C11—N1—C7—C81.0 (3)
Cl1'i—Sn1—C1—C2128.46 (15)N1—C7—C8—C91.2 (3)
Br1i—Sn1—C1—C2128.46 (15)C7—C8—C9—C100.8 (3)
Br1—Sn1—C1—C251.54 (15)C8—C9—C10—C110.1 (3)
C6—C1—C2—C31.2 (3)C7—N1—C11—C100.3 (3)
Sn1—C1—C2—C3177.39 (15)C9—C10—C11—N10.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.882.553.317 (2)146

Experimental details

Crystal data
Chemical formula(C5H6N)2[SnBr3(C6H4Cl)2Cl]
Mr777.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)11.5130 (2), 11.7139 (2), 18.7748 (3)
β (°) 93.230 (1)
V3)2527.99 (7)
Z4
Radiation typeMo Kα
µ (mm1)6.08
Crystal size (mm)0.27 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.327, 0.529
No. of measured, independent and
observed [I > 2σ(I)] reflections
11728, 2903, 2668
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 1.02
No. of reflections2903
No. of parameters146
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.84

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Sn1—C12.149 (2)Sn1—Br22.7060 (2)
Sn1—Br12.7166 (2)
 

Acknowledgements

We thank the University of Malaya for funding this study (RG020/09AFR).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2008a). Acta Cryst. E64, m800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2008b). Acta Cryst. E64, m834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds