organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Darifenacin hydro­bromide

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, and bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 4 May 2009; accepted 6 May 2009; online 14 May 2009)

In the title compound {systematic name: (S)-3-[(aminocar­bonyl)diphenylmethyl]-1-[2-(2,3-di­hy­dro­benzofuran-5-yl)ethyl]pyrrolidinium bromide}, C28H31N2O2+·Br, the pyrrolidine rings adopts an envelope conformation. The two phenyl rings make a dihedral angle of 72.5 (1)°. The four coplanar atoms of the pyrrolidine ring makes dihedral angles of 33.1 (2) and 82.8 (2)° with the two phenyl rings. The mol­ecular conformation is influenced by a C—H⋯O inter­action. In the crystal packing, there are two N—H⋯Br hydrogen bonds running in opposite directions. They appear to form C(10) and C(9) chain motifs in the unit cell. In addition, the mol­ecular packing is further stabilized by C—H⋯Br and C—H⋯O hydrogen bonds. The C atom bonded to the benzofuran ring system is disordered in a 0.66:0.34 ratio.

Related literature

For general background to darifenacin derivatives, see: Chapple (2004[Chapple, C. R. (2004). Expert Opin. Investig. Drugs, 13, 1493-1500.]); Croom & Keating (2004[Croom, K. F. & Keating, G. M. (2004). Drugs Aging, 21, 885-892.]); Haab et al. (2004[Haab, F., Stewart, L. & Dwyer, P. (2004). Eur. Urol. 45, 420-429.]); Levin et al. (2008[Levin, R. M., Juan, Y. S., Whitback, C., Perez-Martinez, F. C. & Lin, W. Y. (2008). Int. Urol. Nephrol. 40, 303-309.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]); Selvanayagam et al. (2005[Selvanayagam, S., Joy, A., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3383-o3385.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C28H31N2O2+·Br

  • Mr = 507.46

  • Orthorhombic, P 21 21 21

  • a = 10.2632 (7) Å

  • b = 10.9525 (8) Å

  • c = 21.7459 (16) Å

  • V = 2444.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 27916 measured reflections

  • 5777 independent reflections

  • 4703 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.121

  • S = 1.07

  • 5777 reflections

  • 315 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.84 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2471 Friedel pairs

  • Flack parameter: 0.005 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1i 0.91 2.57 3.453 (6) 164
N2—H2NB⋯Br1ii 0.86 (1) 2.66 (1) 3.514 (4) 175 (5)
C18—H18⋯O2iii 0.93 2.60 3.382 (6) 142
C19—H19B⋯Br1iv 0.97 2.69 3.609 (5) 158
C4—H4A⋯Br1iv 0.97 2.92 3.770 (5) 147
C1—H1B⋯O1 0.97 2.37 2.959 (5) 119
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Darifenacin is a selective muscarinic M3-receptor antagonist that has been evaluated in clinical trials in patients with overative bladder syndrome using a controlled-release formulation (Chapple, 2004; Croom & Keating, 2004; Haab et al., 2004; Levin et al., 2008). As no crystal structure of the title compound has yet been published, we have undertaken the single-crystal X-ray diffraction study and report here its results.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The bond length of C12—O1 [1.222 (5) Å] confirms the double bond character for amide group, as evidenced by Allen et al. (1987). The C—N and C—-O bond lengths in the pyrrolidine and furan rings are comparable to the related literature values (Selvanayagam et al., 2005).

The pyrrolidine ring adopts an envelope conformation with puckering parameters q2 = 0.213 (4) Å and ϕ = 34.9 (4)° (Cremer & Pople, 1975). Atom C1 deviates by 0.332 (4) Å from the least-squares plane through the remaining four atoms C1—C4 of the ring. The five membered furan ring in the benzofuran system also adopts an envelope conformation with puckering parameters q2 = 0.162 (7) Å and ϕ = 85.9 (8)°. Atom C26 deviate -0.232 (7) Å from the least-squares plane through the remaining four atoms (C24/O2/C25/C27) of the ring.

The dihedral angle between the fused benzene and furan rings of the benzofuran system is 4.6 (2)°. The best plane of the pyrrolidine ring and benzofuran system make a dihedral angle of 44.5 (2)°. Two phenyl rings (A and B) are oriented with a dihedral angle of 72.5 (2)°. These two phenyl rings make a dihedral angle of 33.1 (2) and 82.8 (2)°, respectively with pyrroldine ring.

An intramolecular C—H···O interaction is observed in (I) (Table 2). In the crystal packing, the H1 and H2NB atoms bonded to N1 and N2 forms a strong N—H···Br hydrogen bonds which leads a C(10) and C(9) chain motif in the unit cell running in the opposite directions (Fig. 2). In addition to this the molecular packing is further stabilized by strong C—H···Br hydrogen bonds and C—H···O interactions (Table 2).

Related literature top

For general background to darifenacin derivatives, see: Chapple (2004); Croom & Keating (2004); Haab et al. (2004); Levin et al. (2008). For bond-length data, see: Allen et al. (1987); Selvanayagam et al. (2005). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In order to obtain crystals suitable for X-ray study, darifenacin hydrobromide was dissolved in a methanol-water solution (80:20v/v); the solvents were then allowed to evaporate slowly.

Refinement top

Atoms H2NA and H2NB were located from a difference Fourier map; the remaining H atoms were positioned geometrically and were treated as riding on their parent C and N atoms with C—H distances of 0.93–0.97 Å, N—H distance of 0.91 Å and with Uiso= 1.2Ueq (C or N) for other H. Atom C20 was found to be disordered over two positions. The occupancies were kept fixed at 0.34 and 0.66 during the last cycles of refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme for (I); displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) viewed down the b axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted.
(S)-3-[(aminocarbonyl)diphenylmethyl]-1-[2-(2,3-dihydrobenzofuran-5- yl)ethyl]pyrrolidinium bromide top
Crystal data top
C28H31N2O2+·BrF(000) = 1056
Mr = 507.46Dx = 1.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 18484 reflections
a = 10.2632 (7) Åθ = 2.1–24.9°
b = 10.9525 (8) ŵ = 1.71 mm1
c = 21.7459 (16) ÅT = 293 K
V = 2444.4 (3) Å3Block, colourless
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4703 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ω scansh = 1313
27916 measured reflectionsk = 1414
5777 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.030P)2 + 2.3972P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5777 reflectionsΔρmax = 0.55 e Å3
315 parametersΔρmin = 0.84 e Å3
2 restraintsAbsolute structure: Flack (1983), 2471 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (13)
Crystal data top
C28H31N2O2+·BrV = 2444.4 (3) Å3
Mr = 507.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.2632 (7) ŵ = 1.71 mm1
b = 10.9525 (8) ÅT = 293 K
c = 21.7459 (16) Å0.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4703 reflections with I > 2σ(I)
27916 measured reflectionsRint = 0.065
5777 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121Δρmax = 0.55 e Å3
S = 1.07Δρmin = 0.84 e Å3
5777 reflectionsAbsolute structure: Flack (1983), 2471 Friedel pairs
315 parametersAbsolute structure parameter: 0.005 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.20755 (4)0.88262 (6)0.09168 (2)0.07287 (18)
O10.8147 (3)0.9481 (3)1.04271 (14)0.0553 (8)
O20.2700 (4)0.7835 (4)0.66039 (17)0.0893 (13)
N10.4854 (5)0.8538 (3)1.00332 (19)0.0796 (14)
H10.40340.85871.01900.096*
N20.9041 (4)1.0090 (4)1.1310 (2)0.0599 (10)
H2NA0.899 (6)1.047 (5)1.1657 (14)0.08 (2)*
H2NB0.979 (3)0.977 (5)1.124 (3)0.088 (19)*
C10.5303 (4)0.9721 (3)1.02376 (18)0.0430 (9)
H1A0.46341.03341.01750.052*
H1B0.60790.99631.00140.052*
C20.5605 (3)0.9574 (3)1.0923 (2)0.0389 (8)
H20.48090.97921.11460.047*
C30.5793 (4)0.8189 (4)1.1003 (2)0.0475 (9)
H3A0.67060.79991.10680.057*
H3B0.52990.78971.13540.057*
C40.5312 (6)0.7607 (4)1.0422 (2)0.0686 (14)
H4A0.60140.71631.02240.082*
H4B0.46150.70371.05140.082*
C50.6692 (3)1.0458 (3)1.11486 (17)0.0362 (8)
C60.6657 (3)1.0607 (4)1.18514 (18)0.0426 (9)
C70.6340 (5)0.9655 (5)1.2246 (2)0.0617 (12)
H70.61430.88901.20850.074*
C80.6316 (6)0.9834 (6)1.2875 (2)0.0774 (16)
H80.60840.91901.31310.093*
C90.6623 (6)1.0930 (6)1.3127 (2)0.0794 (17)
H90.66071.10411.35510.095*
C100.6950 (7)1.1847 (6)1.2750 (2)0.0826 (17)
H100.71691.25971.29210.099*
C110.6975 (5)1.1726 (4)1.2122 (2)0.0611 (11)
H110.72021.23881.18770.073*
C120.8038 (4)0.9953 (3)1.0934 (2)0.0411 (8)
C130.6455 (3)1.1693 (3)1.08343 (16)0.0351 (7)
C140.7313 (4)1.2233 (4)1.04213 (18)0.0448 (9)
H140.81161.18681.03460.054*
C150.6995 (5)1.3297 (4)1.0122 (2)0.0540 (10)
H150.75761.36260.98380.065*
C160.5835 (4)1.3883 (4)1.0233 (2)0.0539 (10)
H160.56311.46111.00340.065*
C170.4976 (4)1.3360 (4)1.06486 (19)0.0516 (10)
H170.41811.37381.07270.062*
C180.5280 (4)1.2300 (4)1.0944 (2)0.0476 (9)
H180.46931.19741.12250.057*
C190.4492 (5)0.8315 (4)0.94064 (19)0.0540 (10)
H19A0.35830.80720.94120.065*
H19B0.49830.76060.92740.065*
C20A0.4620 (17)0.9225 (13)0.8917 (6)0.061 (4)0.34
H20A0.55070.92340.87620.073*0.34
H20B0.44171.00310.90750.073*0.34
C20B0.3745 (7)0.9232 (6)0.9058 (3)0.0522 (15)0.66
H20C0.41751.00190.90900.063*0.66
H20D0.28820.93100.92350.063*0.66
C210.3624 (6)0.8874 (5)0.8370 (2)0.0757 (15)
C220.2571 (6)0.9394 (5)0.8092 (3)0.0838 (19)
H220.20820.99630.83100.101*
C230.2203 (7)0.9105 (5)0.7496 (3)0.0851 (17)
H230.14900.94770.73100.102*
C240.2931 (6)0.8250 (5)0.7192 (2)0.0676 (13)
C250.3778 (7)0.7098 (8)0.6432 (3)0.101 (2)
H25A0.43290.75370.61450.121*
H25B0.34740.63580.62330.121*
C260.4540 (6)0.6781 (7)0.7004 (3)0.0924 (19)
H26A0.54700.68750.69410.111*
H26B0.43570.59560.71420.111*
C270.4011 (5)0.7728 (5)0.7451 (2)0.0620 (12)
C280.4357 (6)0.8019 (5)0.8044 (2)0.0731 (15)
H280.50750.76490.82270.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04001 (18)0.1050 (4)0.0736 (3)0.0003 (3)0.0002 (2)0.0401 (3)
O10.0539 (18)0.0521 (17)0.0601 (18)0.0106 (14)0.0124 (14)0.0081 (14)
O20.105 (3)0.098 (3)0.065 (2)0.006 (3)0.041 (2)0.005 (2)
N10.133 (4)0.044 (2)0.062 (2)0.029 (2)0.040 (3)0.0073 (18)
N20.0346 (19)0.075 (3)0.070 (3)0.0114 (19)0.0007 (18)0.004 (2)
C10.049 (2)0.0344 (19)0.045 (2)0.0030 (16)0.0053 (17)0.0020 (16)
C20.0372 (17)0.0395 (19)0.0400 (19)0.0023 (15)0.0002 (17)0.0062 (17)
C30.055 (2)0.042 (2)0.046 (2)0.0027 (18)0.0002 (19)0.0074 (18)
C40.108 (4)0.039 (2)0.058 (3)0.012 (3)0.013 (3)0.001 (2)
C50.0321 (17)0.0388 (19)0.0378 (19)0.0017 (14)0.0028 (13)0.0005 (15)
C60.0356 (18)0.051 (2)0.041 (2)0.0044 (16)0.0004 (15)0.0007 (17)
C70.087 (3)0.060 (3)0.039 (2)0.002 (3)0.003 (2)0.001 (2)
C80.113 (4)0.081 (4)0.039 (3)0.012 (3)0.002 (3)0.009 (3)
C90.095 (4)0.106 (5)0.037 (2)0.033 (3)0.006 (2)0.015 (3)
C100.098 (4)0.094 (4)0.056 (3)0.018 (4)0.023 (3)0.036 (3)
C110.071 (3)0.060 (3)0.053 (3)0.006 (3)0.007 (2)0.005 (2)
C120.0372 (17)0.0320 (17)0.054 (2)0.0011 (15)0.008 (2)0.0026 (17)
C130.0376 (16)0.0329 (17)0.0347 (18)0.0025 (13)0.0019 (14)0.0049 (15)
C140.039 (2)0.041 (2)0.054 (2)0.0039 (16)0.0063 (17)0.0055 (17)
C150.061 (2)0.042 (2)0.059 (2)0.013 (2)0.003 (2)0.0085 (18)
C160.071 (3)0.038 (2)0.052 (2)0.002 (2)0.014 (2)0.003 (2)
C170.059 (2)0.046 (2)0.050 (2)0.0158 (19)0.0084 (19)0.0079 (18)
C180.0421 (19)0.055 (2)0.046 (2)0.0082 (17)0.0016 (18)0.000 (2)
C190.070 (3)0.041 (2)0.051 (2)0.002 (2)0.012 (2)0.0066 (19)
C20A0.071 (9)0.058 (8)0.053 (8)0.014 (7)0.012 (7)0.015 (6)
C20B0.058 (4)0.041 (3)0.058 (4)0.005 (3)0.009 (4)0.003 (3)
C210.123 (4)0.049 (3)0.055 (3)0.007 (3)0.026 (3)0.006 (2)
C220.114 (5)0.067 (3)0.071 (4)0.021 (3)0.013 (3)0.000 (3)
C230.094 (4)0.071 (4)0.090 (4)0.016 (3)0.038 (4)0.009 (3)
C240.077 (3)0.068 (3)0.058 (3)0.010 (3)0.026 (3)0.012 (2)
C250.098 (5)0.141 (7)0.063 (4)0.020 (5)0.001 (3)0.021 (4)
C260.079 (4)0.105 (5)0.093 (4)0.002 (3)0.018 (3)0.022 (4)
C270.061 (3)0.070 (3)0.055 (3)0.013 (2)0.017 (2)0.002 (2)
C280.084 (4)0.066 (3)0.070 (3)0.004 (3)0.037 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C121.222 (5)C13—C181.397 (5)
O2—C241.378 (6)C14—C151.374 (6)
O2—C251.420 (8)C14—H140.9300
N1—C41.406 (6)C15—C161.375 (7)
N1—C191.434 (5)C15—H150.9300
N1—C11.446 (5)C16—C171.387 (6)
N1—H10.9100C16—H160.9300
N2—C121.324 (6)C17—C181.363 (6)
N2—H2NA0.863 (10)C17—H170.9300
N2—H2NB0.860 (10)C18—H180.9300
C1—C21.530 (6)C19—C20A1.464 (13)
C1—H1A0.9700C19—C20B1.473 (7)
C1—H1B0.9700C19—H19A0.9700
C2—C31.539 (5)C19—H19B0.9700
C2—C51.557 (5)C20A—C211.614 (14)
C2—H20.9800C20A—H20A0.9700
C3—C41.499 (6)C20A—H20B0.9700
C3—H3A0.9700C20B—C211.551 (9)
C3—H3B0.9700C20B—H20C0.9700
C4—H4A0.9700C20B—H20D0.9700
C4—H4B0.9700C21—C221.363 (8)
C5—C131.535 (5)C21—C281.395 (8)
C5—C61.537 (5)C22—C231.388 (8)
C5—C121.561 (5)C22—H220.9300
C6—C71.389 (6)C23—C241.368 (8)
C6—C111.398 (6)C23—H230.9300
C7—C81.381 (7)C24—C271.368 (7)
C7—H70.9300C25—C261.511 (8)
C8—C91.357 (8)C25—H25A0.9700
C8—H80.9300C25—H25B0.9700
C9—C101.338 (8)C26—C271.522 (8)
C9—H90.9300C26—H26A0.9700
C10—C111.372 (6)C26—H26B0.9700
C10—H100.9300C27—C281.375 (7)
C11—H110.9300C28—H280.9300
C13—C141.390 (5)
C24—O2—C25107.4 (4)C14—C15—C16121.3 (4)
C4—N1—C19122.4 (4)C14—C15—H15119.4
C4—N1—C1111.0 (4)C16—C15—H15119.4
C19—N1—C1121.8 (4)C15—C16—C17118.2 (4)
C4—N1—H197.3C15—C16—H16120.9
C19—N1—H197.3C17—C16—H16120.9
C1—N1—H197.3C18—C17—C16120.9 (4)
C12—N2—H2NA123 (4)C18—C17—H17119.6
C12—N2—H2NB122 (4)C16—C17—H17119.6
H2NA—N2—H2NB114 (6)C17—C18—C13121.5 (4)
N1—C1—C2105.6 (3)C17—C18—H18119.2
N1—C1—H1A110.6C13—C18—H18119.2
C2—C1—H1A110.6N1—C19—C20A123.5 (6)
N1—C1—H1B110.6N1—C19—C20B120.5 (4)
C2—C1—H1B110.6C20A—C19—C20B37.7 (7)
H1A—C1—H1B108.7N1—C19—H19A106.4
C1—C2—C3103.9 (3)C20A—C19—H19A106.4
C1—C2—C5112.8 (3)C20B—C19—H19A72.2
C3—C2—C5119.1 (3)N1—C19—H19B106.4
C1—C2—H2106.8C20A—C19—H19B106.4
C3—C2—H2106.8C20B—C19—H19B131.6
C5—C2—H2106.8H19A—C19—H19B106.5
C4—C3—C2106.4 (4)C19—C20A—C21108.4 (9)
C4—C3—H3A110.5C19—C20A—H20A110.0
C2—C3—H3A110.5C21—C20A—H20A110.0
C4—C3—H3B110.5C19—C20A—H20B110.0
C2—C3—H3B110.5C21—C20A—H20B110.0
H3A—C3—H3B108.6H20A—C20A—H20B108.4
N1—C4—C3108.0 (4)C19—C20B—C21111.4 (5)
N1—C4—H4A110.1C19—C20B—H20C109.3
C3—C4—H4A110.1C21—C20B—H20C109.3
N1—C4—H4B110.1C19—C20B—H20D109.3
C3—C4—H4B110.1C21—C20B—H20D109.3
H4A—C4—H4B108.4H20C—C20B—H20D108.0
C13—C5—C6110.2 (3)C22—C21—C28118.9 (5)
C13—C5—C2107.1 (3)C22—C21—C20B112.6 (6)
C6—C5—C2111.3 (3)C28—C21—C20B128.1 (5)
C13—C5—C12108.6 (3)C22—C21—C20A136.8 (8)
C6—C5—C12110.8 (3)C28—C21—C20A101.1 (8)
C2—C5—C12108.6 (3)C20B—C21—C20A34.8 (6)
C7—C6—C11116.9 (4)C21—C22—C23122.3 (6)
C7—C6—C5122.7 (4)C21—C22—H22118.8
C11—C6—C5120.4 (4)C23—C22—H22118.8
C8—C7—C6120.6 (5)C24—C23—C22117.3 (5)
C8—C7—H7119.7C24—C23—H23121.3
C6—C7—H7119.7C22—C23—H23121.3
C9—C8—C7121.5 (5)C23—C24—C27122.0 (5)
C9—C8—H8119.3C23—C24—O2125.4 (5)
C7—C8—H8119.3C27—C24—O2112.6 (5)
C10—C9—C8118.3 (5)O2—C25—C26108.4 (5)
C10—C9—H9120.8O2—C25—H25A110.0
C8—C9—H9120.8C26—C25—H25A110.0
C9—C10—C11122.8 (5)O2—C25—H25B110.0
C9—C10—H10118.6C26—C25—H25B110.0
C11—C10—H10118.6H25A—C25—H25B108.4
C10—C11—C6120.0 (5)C25—C26—C27100.7 (5)
C10—C11—H11120.0C25—C26—H26A111.6
C6—C11—H11120.0C27—C26—H26A111.6
O1—C12—N2122.4 (4)C25—C26—H26B111.6
O1—C12—C5120.1 (4)C27—C26—H26B111.6
N2—C12—C5117.6 (3)H26A—C26—H26B109.4
C14—C13—C18117.1 (3)C24—C27—C28119.9 (5)
C14—C13—C5124.2 (3)C24—C27—C26108.1 (4)
C18—C13—C5118.7 (3)C28—C27—C26131.7 (5)
C15—C14—C13121.1 (4)C27—C28—C21119.5 (5)
C15—C14—H14119.5C27—C28—H28120.2
C13—C14—H14119.5C21—C28—H28120.2
C4—N1—C1—C223.2 (6)C5—C13—C14—C15175.0 (4)
C19—N1—C1—C2179.2 (5)C13—C14—C15—C161.9 (6)
N1—C1—C2—C320.9 (4)C14—C15—C16—C171.2 (6)
N1—C1—C2—C5151.3 (4)C15—C16—C17—C180.7 (6)
C1—C2—C3—C412.2 (5)C16—C17—C18—C130.8 (6)
C5—C2—C3—C4138.7 (4)C14—C13—C18—C171.4 (6)
C19—N1—C4—C3171.2 (5)C5—C13—C18—C17175.7 (4)
C1—N1—C4—C315.3 (7)C4—N1—C19—C20A149.3 (10)
C2—C3—C4—N11.1 (6)C1—N1—C19—C20A4.0 (12)
C1—C2—C5—C1340.3 (4)C4—N1—C19—C20B166.0 (6)
C3—C2—C5—C13162.5 (4)C1—N1—C19—C20B40.7 (8)
C1—C2—C5—C6160.8 (3)N1—C19—C20A—C21157.4 (7)
C3—C2—C5—C677.0 (5)C20B—C19—C20A—C2159.4 (9)
C1—C2—C5—C1276.9 (4)N1—C19—C20B—C21172.5 (5)
C3—C2—C5—C1245.3 (5)C20A—C19—C20B—C2165.9 (11)
C13—C5—C6—C7154.5 (4)C19—C20B—C21—C22156.0 (6)
C2—C5—C6—C735.8 (5)C19—C20B—C21—C2816.8 (10)
C12—C5—C6—C785.2 (5)C19—C20B—C21—C20A62.4 (10)
C13—C5—C6—C1126.7 (5)C19—C20A—C21—C22118.0 (10)
C2—C5—C6—C11145.4 (4)C19—C20A—C21—C2883.9 (11)
C12—C5—C6—C1193.6 (4)C19—C20A—C21—C20B61.1 (9)
C11—C6—C7—C81.5 (7)C28—C21—C22—C230.0 (9)
C5—C6—C7—C8179.7 (5)C20B—C21—C22—C23173.6 (6)
C6—C7—C8—C91.3 (9)C20A—C21—C22—C23155.2 (10)
C7—C8—C9—C100.2 (9)C21—C22—C23—C241.0 (10)
C8—C9—C10—C110.6 (10)C22—C23—C24—C272.5 (9)
C9—C10—C11—C60.4 (9)C22—C23—C24—O2178.9 (6)
C7—C6—C11—C100.7 (7)C25—O2—C24—C23171.6 (6)
C5—C6—C11—C10179.5 (5)C25—O2—C24—C277.1 (7)
C13—C5—C12—O177.7 (4)C24—O2—C25—C2615.4 (7)
C6—C5—C12—O1161.0 (4)O2—C25—C26—C2716.7 (7)
C2—C5—C12—O138.5 (5)C23—C24—C27—C283.0 (8)
C13—C5—C12—N2100.3 (4)O2—C24—C27—C28178.2 (5)
C6—C5—C12—N220.9 (5)C23—C24—C27—C26177.2 (6)
C2—C5—C12—N2143.5 (4)O2—C24—C27—C264.0 (6)
C6—C5—C13—C14122.6 (4)C25—C26—C27—C2412.5 (6)
C2—C5—C13—C14116.2 (4)C25—C26—C27—C28174.3 (6)
C12—C5—C13—C141.0 (5)C24—C27—C28—C211.9 (8)
C6—C5—C13—C1860.5 (4)C26—C27—C28—C21174.5 (6)
C2—C5—C13—C1860.8 (4)C22—C21—C28—C270.5 (9)
C12—C5—C13—C18177.9 (3)C20B—C21—C28—C27172.9 (6)
C18—C13—C14—C152.0 (6)C20A—C21—C28—C27162.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br1i0.912.573.453 (6)164
N2—H2NB···Br1ii0.86 (1)2.66 (1)3.514 (4)175 (5)
C18—H18···O2iii0.932.603.382 (6)142
C19—H19B···Br1iv0.972.693.609 (5)158
C4—H4A···Br1iv0.972.923.770 (5)147
C1—H1B···O10.972.372.959 (5)119
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+2, z+1/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC28H31N2O2+·Br
Mr507.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.2632 (7), 10.9525 (8), 21.7459 (16)
V3)2444.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27916, 5777, 4703
Rint0.065
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.121, 1.07
No. of reflections5777
No. of parameters315
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.84
Absolute structureFlack (1983), 2471 Friedel pairs
Absolute structure parameter0.005 (13)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Selected bond lengths (Å) top
O1—C121.222 (5)N1—C41.406 (6)
O2—C241.378 (6)N1—C191.434 (5)
O2—C251.420 (8)N1—C11.446 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br1i0.912.573.453 (6)164
N2—H2NB···Br1ii0.86 (1)2.66 (1)3.514 (4)175 (5)
C18—H18···O2iii0.932.603.382 (6)142
C19—H19B···Br1iv0.972.693.609 (5)158
C4—H4A···Br1iv0.972.923.770 (5)147
C1—H1B···O10.972.372.959 (5)119
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+2, z+1/2; (iv) x+1/2, y+3/2, z+1.
 

Acknowledgements

SS thanks the Vice Chancellor and management of Kalasalingam University for their support and encouragement.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChapple, C. R. (2004). Expert Opin. Investig. Drugs, 13, 1493–1500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCroom, K. F. & Keating, G. M. (2004). Drugs Aging, 21, 885-892.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaab, F., Stewart, L. & Dwyer, P. (2004). Eur. Urol. 45, 420–429.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLevin, R. M., Juan, Y. S., Whitback, C., Perez-Martinez, F. C. & Lin, W. Y. (2008). Int. Urol. Nephrol. 40, 303–309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, S., Joy, A., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3383–o3385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds