metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m687-m688

Methyl 5-ferrocenyl-5a-hydr­­oxy-1-methyl-10-oxo-2,3,3a,4,5a,10-hexa­hydro-1H-indeno[1,2:2′,3′]furo[3′,4′-b]pyrrole-3a-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 8 May 2009; accepted 16 May 2009; online 29 May 2009)

In the title compound, [Fe(C5H5)(C21H20NO5)], the pyrrolidine and cyclo­penta­none rings exhibit a twist conformation. The pyrrolidine ring is almost perpendicular to the cyclo­penta­none ring, making a dihedral angle of 81.91 (6)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond and C—H⋯O inter­actions. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions.

Related literature

For general background and uses of ferrocene-based ligands, see Gomez Arrayas et al. (2006[Gomez Arrayas, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674-7715.]); Blaser & Schmidt (2004[Blaser, H. U. & Schmidt, E. (2004). In Asymmetric Catalysis on Industrial Scale. Weinheim: Wiley-VCH.]); Johnson & Sames (2000[Johnson, J. J. & Sames, D. (2000). J. Am. Chem. Soc. 122, 6321-6322.]); Baar et al. (2000[Baar, C. R., Carbray, L. P., Jennings, M. C. & Puddephatt, R. J. (2000). J. Am. Chem. Soc. 122, 176-177.]); Staveren & Metzler-Nolte (2004[Staveren, D. R. V. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931-5986.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C21H20NO5)]

  • Mr = 487.32

  • Monoclinic, P 21 /n

  • a = 7.7292 (2) Å

  • b = 24.7713 (7) Å

  • c = 11.8120 (4) Å

  • β = 93.4450 (10)°

  • V = 2257.47 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.816, Tmax = 0.872

  • 32884 measured reflections

  • 7917 independent reflections

  • 6016 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.123

  • S = 1.05

  • 7917 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.46 3.157 (2) 131
C15—H15⋯O3ii 0.98 2.52 3.303 (2) 137
C16—H16⋯O4ii 0.98 2.59 3.547 (2) 166
C13—H13⋯O5 0.98 2.40 2.820 (2) 105
C24—H24B⋯O3 0.96 2.42 3.014 (3) 120
O2—H2C⋯N1 0.82 2.15 2.6414 (19) 119
C2—H2A⋯O4 0.97 2.42 2.761 (2) 100
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: APEX2 and SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ferrocene-based ligands incorporating chirality are very important (Gomez Arrayas et al., 2006) and some of them have already been applied in industrial processes because of their stability, low price and unique structure (Blaser & Schmidt, 2004). Transition metal complexes derived from ferrocene have attracted great intrest due to their applications as precursors for the synthesis of organic as well as organometallic compounds (Johnson & Sames, 2000), in homogeneous catalysis (Baar et al., 2000), or even in biological chemistry (Staveren & Metzler-Nolte, 2004).

Fig. 1 shows the ORTEP plot of compound (I). Bond lengths and angles are comparable with other reported values.

In the molecule the pyrrolidine ring N1/C1/C2/C3/C4 exhibits twist conformation with assymetry parameters (Nardelli, 1983) ΔCs(C1) = 12.47 (2)/ (C2) = 17.76 (21) and with the puckering parameters (Cremer & Pople, 1975) q2 = 0.3819 (2) Å and ϕ2 = 53.2 (2)°. The cyclopentanone ring also exhibits twist conformation with assymetry parameters ΔCs(C4) = 4.07 (2)/ (C12) = 4.11 (2) and with the puckering parameters q2 = 0.1106 (2) Å and ϕ2 = 343.6 (8)°. The sum of bond angles around N1 [341.70 (4)°] indicates sp2 hybridization. The pyrrolidine ring is almost perpendicular to the cyclopentanone ring making a dihedral angle of 81.91 (6)° and the ferrocene ring is perpendicular to the phenyl ring with a dihedral angle of 84.37 (8)°. The cyclopentanone and the phenyl rings are planar with each other making an angle of 5.06 (5)°.

In the crystal packing, atoms O3 and O4 are involved in intermolecular C—H···O interactions and atom O2 contributes to N—H···O intramolecular interactions.

Related literature top

For general background and uses of ferrocene-based ligands, see Gomez Arrayas et al. (2006); Blaser & Schmidt (2004); Johnson & Sames (2000); Baar et al. (2000); Staveren & Metzler-Nolte (2004). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

A mixture of ferrocenyl Baylis–Hillman adduct, sarcosine and ninhydrin were refluxed in 1,2-dichloethane for 35 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. The product was recrystallized from dry benzene by slow evaporation.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 or 0.96 Å and Uiso(H)= 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed along b axis.
Methyl 5-ferrocenyl-5a-hydroxy-1-methyl-10-oxo-2,3,3a,4,5a,10-hexahydro- 1H-indeno[1,2:2',3']furo[3',4'-b]pyrrole-3a-carboxylate top
Crystal data top
[Fe(C5H5)(C21H20NO5)]F(000) = 1016
Mr = 487.32Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 32884 reflections
a = 7.7292 (2) Åθ = 1.6–32.1°
b = 24.7713 (7) ŵ = 0.71 mm1
c = 11.8120 (4) ÅT = 293 K
β = 93.445 (1)°Prism, orange
V = 2257.47 (12) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
7917 independent reflections
Radiation source: fine-focus sealed tube6016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 32.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.816, Tmax = 0.872k = 3734
32884 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.067P)2 + 0.4193P]
where P = (Fo2 + 2Fc2)/3
7917 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Fe(C5H5)(C21H20NO5)]V = 2257.47 (12) Å3
Mr = 487.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7292 (2) ŵ = 0.71 mm1
b = 24.7713 (7) ÅT = 293 K
c = 11.8120 (4) Å0.30 × 0.25 × 0.20 mm
β = 93.445 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
7917 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6016 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.872Rint = 0.028
32884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
7917 reflectionsΔρmin = 0.35 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4102 (2)0.20020 (8)0.59190 (15)0.0407 (4)
H1A0.40530.23760.56780.049*
H1B0.52540.19240.62490.049*
C20.2738 (2)0.18825 (7)0.67450 (13)0.0346 (3)
H2A0.26340.21780.72760.042*
H2B0.30080.15540.71650.042*
C30.10722 (17)0.18175 (5)0.59839 (11)0.0248 (2)
C40.17555 (18)0.15859 (5)0.48640 (11)0.0270 (3)
C50.0840 (2)0.18021 (6)0.37684 (11)0.0305 (3)
C60.0361 (2)0.13816 (6)0.33231 (11)0.0306 (3)
C70.1570 (2)0.14203 (7)0.24089 (13)0.0412 (4)
H70.16600.17320.19700.049*
C80.2628 (3)0.09837 (9)0.21740 (16)0.0499 (4)
H80.34400.09970.15610.060*
C90.2499 (3)0.05245 (8)0.28383 (17)0.0520 (5)
H90.32390.02360.26680.062*
C100.1296 (3)0.04837 (7)0.37506 (16)0.0437 (4)
H100.12220.01740.41950.052*
C110.0204 (2)0.09189 (6)0.39817 (12)0.0304 (3)
C120.12180 (19)0.09758 (6)0.48990 (11)0.0288 (3)
C130.01516 (18)0.13617 (5)0.63622 (11)0.0258 (2)
H130.12890.14010.59570.031*
C140.03749 (18)0.13378 (6)0.76052 (11)0.0284 (3)
C150.1605 (2)0.16454 (6)0.81773 (13)0.0346 (3)
H150.24520.18970.78220.042*
C160.1410 (3)0.15208 (7)0.93502 (13)0.0428 (4)
H160.20980.16710.99460.051*
C170.0065 (2)0.11379 (8)0.95056 (13)0.0451 (4)
H170.03450.09761.02300.054*
C180.0584 (2)0.10234 (7)0.84277 (13)0.0367 (3)
H180.15220.07720.82800.044*
C190.3003 (3)0.02961 (9)0.7276 (2)0.0606 (6)
H190.27000.02620.64850.073*
C200.4307 (3)0.06263 (10)0.7669 (2)0.0666 (6)
H200.50940.08590.72080.080*
C210.4295 (3)0.05528 (12)0.8862 (3)0.0791 (9)
H210.50740.07280.93730.095*
C220.2990 (4)0.01844 (11)0.9176 (2)0.0767 (8)
H220.26860.00560.99480.092*
C230.2207 (4)0.00267 (9)0.8196 (2)0.0687 (7)
H230.12420.02280.81640.082*
C240.4551 (3)0.17375 (11)0.39497 (19)0.0616 (6)
H24A0.57730.17630.41420.074*
H24B0.41490.20690.36070.074*
H24C0.43350.14460.34260.074*
C250.01735 (19)0.23602 (6)0.58256 (12)0.0295 (3)
C260.2250 (3)0.28321 (8)0.5066 (2)0.0582 (5)
H26A0.33690.27670.46940.070*
H26B0.15640.30440.45810.070*
H26C0.23850.30230.57620.070*
N10.36358 (17)0.16382 (6)0.49745 (12)0.0385 (3)
O10.06469 (15)0.08784 (4)0.60056 (9)0.0320 (2)
O20.25662 (16)0.06304 (5)0.47192 (10)0.0409 (3)
H2C0.34840.07730.49360.049*
O30.10650 (19)0.22437 (5)0.33645 (11)0.0487 (3)
O40.07972 (19)0.27824 (5)0.61256 (14)0.0553 (4)
O50.13909 (15)0.23198 (5)0.53094 (11)0.0406 (3)
Fe10.19791 (3)0.084076 (8)0.842289 (18)0.03124 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (7)0.0467 (9)0.0460 (8)0.0073 (7)0.0002 (6)0.0006 (7)
C20.0332 (7)0.0373 (8)0.0327 (7)0.0035 (6)0.0035 (5)0.0020 (6)
C30.0276 (6)0.0219 (6)0.0249 (5)0.0009 (5)0.0025 (4)0.0005 (4)
C40.0298 (6)0.0230 (6)0.0287 (6)0.0015 (5)0.0054 (5)0.0003 (5)
C50.0382 (7)0.0266 (6)0.0275 (6)0.0022 (6)0.0072 (5)0.0023 (5)
C60.0387 (7)0.0281 (7)0.0253 (6)0.0013 (6)0.0054 (5)0.0010 (5)
C70.0518 (10)0.0428 (9)0.0287 (7)0.0018 (7)0.0007 (6)0.0008 (6)
C80.0514 (11)0.0580 (11)0.0392 (8)0.0047 (9)0.0072 (7)0.0075 (8)
C90.0543 (11)0.0458 (10)0.0553 (11)0.0171 (9)0.0026 (9)0.0117 (8)
C100.0570 (10)0.0286 (8)0.0456 (9)0.0097 (7)0.0026 (8)0.0012 (6)
C110.0386 (7)0.0245 (6)0.0286 (6)0.0016 (5)0.0053 (5)0.0024 (5)
C120.0372 (7)0.0209 (6)0.0285 (6)0.0023 (5)0.0046 (5)0.0001 (5)
C130.0297 (6)0.0206 (6)0.0273 (6)0.0018 (5)0.0029 (5)0.0024 (4)
C140.0318 (7)0.0268 (6)0.0269 (6)0.0043 (5)0.0036 (5)0.0020 (5)
C150.0434 (8)0.0256 (7)0.0355 (7)0.0013 (6)0.0077 (6)0.0029 (5)
C160.0577 (10)0.0400 (9)0.0316 (7)0.0117 (8)0.0108 (7)0.0087 (6)
C170.0525 (10)0.0547 (11)0.0278 (7)0.0113 (8)0.0008 (6)0.0069 (7)
C180.0320 (7)0.0431 (9)0.0349 (7)0.0003 (6)0.0019 (6)0.0098 (6)
C190.0717 (14)0.0498 (12)0.0620 (12)0.0267 (10)0.0180 (10)0.0215 (10)
C200.0466 (11)0.0551 (13)0.0970 (19)0.0138 (10)0.0048 (11)0.0154 (12)
C210.0657 (15)0.0739 (17)0.103 (2)0.0361 (13)0.0521 (15)0.0357 (15)
C220.103 (2)0.0593 (14)0.0700 (15)0.0363 (15)0.0245 (14)0.0153 (11)
C230.0789 (16)0.0283 (9)0.1009 (19)0.0077 (10)0.0216 (14)0.0013 (10)
C240.0436 (10)0.0817 (16)0.0623 (12)0.0127 (10)0.0264 (9)0.0172 (11)
C250.0339 (7)0.0238 (6)0.0311 (6)0.0002 (5)0.0056 (5)0.0002 (5)
C260.0475 (11)0.0378 (10)0.0881 (16)0.0124 (8)0.0049 (10)0.0137 (10)
N10.0281 (6)0.0417 (8)0.0465 (7)0.0027 (5)0.0093 (5)0.0054 (6)
O10.0481 (6)0.0197 (4)0.0289 (5)0.0020 (4)0.0072 (4)0.0034 (3)
O20.0459 (7)0.0315 (6)0.0457 (6)0.0122 (5)0.0054 (5)0.0037 (5)
O30.0688 (9)0.0340 (6)0.0431 (6)0.0140 (6)0.0023 (6)0.0134 (5)
O40.0585 (8)0.0255 (6)0.0798 (10)0.0030 (6)0.0130 (7)0.0090 (6)
O50.0344 (6)0.0277 (5)0.0590 (7)0.0032 (4)0.0034 (5)0.0062 (5)
Fe10.03617 (13)0.02629 (11)0.03231 (11)0.00393 (8)0.01072 (8)0.00053 (7)
Geometric parameters (Å, º) top
C1—N11.462 (2)C15—H150.9800
C1—C21.508 (2)C16—C171.411 (3)
C1—H1A0.9700C16—Fe12.0428 (16)
C1—H1B0.9700C16—H160.9800
C2—C31.534 (2)C17—C181.425 (2)
C2—H2A0.9700C17—Fe12.0342 (18)
C2—H2B0.9700C17—H170.9800
C3—C251.5195 (19)C18—Fe12.0315 (16)
C3—C131.5557 (18)C18—H180.9800
C3—C41.5626 (18)C19—C231.388 (4)
C4—N11.4571 (19)C19—C201.399 (3)
C4—C51.534 (2)C19—Fe12.0380 (19)
C4—C121.5686 (19)C19—H190.9800
C5—O31.2102 (18)C20—C211.419 (4)
C5—C61.472 (2)C20—Fe12.029 (2)
C6—C111.386 (2)C20—H200.9800
C6—C71.388 (2)C21—C221.394 (4)
C7—C81.374 (3)C21—Fe12.023 (2)
C7—H70.9300C21—H210.9800
C8—C91.382 (3)C22—C231.394 (4)
C8—H80.9300C22—Fe12.032 (2)
C9—C101.384 (3)C22—H220.9800
C9—H90.9300C23—Fe12.040 (2)
C10—C111.386 (2)C23—H230.9800
C10—H100.9300C24—N11.459 (2)
C11—C121.503 (2)C24—H24A0.9600
C12—O21.3747 (18)C24—H24B0.9600
C12—O11.4251 (17)C24—H24C0.9600
C13—O11.4223 (16)C25—O41.1963 (19)
C13—C141.4897 (18)C25—O51.3248 (19)
C13—H130.9800C26—O51.453 (2)
C14—C181.419 (2)C26—H26A0.9600
C14—C151.421 (2)C26—H26B0.9600
C14—Fe12.0323 (13)C26—H26C0.9600
C15—C161.418 (2)O2—H2C0.8200
C15—Fe12.0372 (15)
N1—C1—C2102.88 (13)Fe1—C19—H19125.8
N1—C1—H1A111.2C19—C20—C21107.0 (2)
C2—C1—H1A111.2C19—C20—Fe170.21 (13)
N1—C1—H1B111.2C21—C20—Fe169.27 (13)
C2—C1—H1B111.2C19—C20—H20126.5
H1A—C1—H1B109.1C21—C20—H20126.5
C1—C2—C3103.66 (12)Fe1—C20—H20126.5
C1—C2—H2A111.0C22—C21—C20108.1 (2)
C3—C2—H2A111.0C22—C21—Fe170.23 (13)
C1—C2—H2B111.0C20—C21—Fe169.73 (12)
C3—C2—H2B111.0C22—C21—H21126.0
H2A—C2—H2B109.0C20—C21—H21126.0
C25—C3—C2109.92 (12)Fe1—C21—H21126.0
C25—C3—C13113.33 (11)C23—C22—C21107.8 (2)
C2—C3—C13114.28 (11)C23—C22—Fe170.31 (12)
C25—C3—C4113.32 (11)C21—C22—Fe169.56 (13)
C2—C3—C4102.72 (11)C23—C22—H22126.1
C13—C3—C4102.65 (10)C21—C22—H22126.1
N1—C4—C5116.85 (12)Fe1—C22—H22126.1
N1—C4—C3106.11 (11)C19—C23—C22108.8 (2)
C5—C4—C3115.08 (11)C19—C23—Fe170.02 (12)
N1—C4—C12110.34 (12)C22—C23—Fe169.67 (13)
C5—C4—C12104.43 (11)C19—C23—H23125.6
C3—C4—C12103.17 (10)C22—C23—H23125.6
O3—C5—C6126.98 (14)Fe1—C23—H23125.6
O3—C5—C4125.34 (14)N1—C24—H24A109.5
C6—C5—C4107.67 (11)N1—C24—H24B109.5
C11—C6—C7121.73 (15)H24A—C24—H24B109.5
C11—C6—C5110.64 (13)N1—C24—H24C109.5
C7—C6—C5127.58 (14)H24A—C24—H24C109.5
C8—C7—C6117.86 (16)H24B—C24—H24C109.5
C8—C7—H7121.1O4—C25—O5122.86 (15)
C6—C7—H7121.1O4—C25—C3124.32 (14)
C7—C8—C9120.77 (17)O5—C25—C3112.81 (12)
C7—C8—H8119.6O5—C26—H26A109.5
C9—C8—H8119.6O5—C26—H26B109.5
C8—C9—C10121.61 (17)H26A—C26—H26B109.5
C8—C9—H9119.2O5—C26—H26C109.5
C10—C9—H9119.2H26A—C26—H26C109.5
C9—C10—C11117.98 (16)H26B—C26—H26C109.5
C9—C10—H10121.0C4—N1—C24118.13 (15)
C11—C10—H10121.0C4—N1—C1108.77 (12)
C10—C11—C6120.03 (15)C24—N1—C1114.80 (15)
C10—C11—C12128.69 (14)C13—O1—C12107.04 (10)
C6—C11—C12111.27 (13)C12—O2—H2C109.5
O2—C12—O1108.41 (11)C25—O5—C26114.76 (14)
O2—C12—C11111.00 (12)C21—Fe1—C2041.00 (12)
O1—C12—C11113.09 (12)C21—Fe1—C18162.82 (11)
O2—C12—C4113.03 (12)C20—Fe1—C18153.91 (9)
O1—C12—C4106.52 (10)C21—Fe1—C2240.21 (13)
C11—C12—C4104.76 (11)C20—Fe1—C2268.19 (12)
O1—C13—C14109.66 (11)C18—Fe1—C22125.27 (11)
O1—C13—C3104.10 (10)C21—Fe1—C14155.48 (12)
C14—C13—C3114.86 (11)C20—Fe1—C14120.02 (9)
O1—C13—H13109.3C18—Fe1—C1440.87 (6)
C14—C13—H13109.3C22—Fe1—C14162.65 (11)
C3—C13—H13109.3C21—Fe1—C17126.00 (10)
C18—C14—C15107.79 (13)C20—Fe1—C17164.24 (10)
C18—C14—C13127.59 (13)C18—Fe1—C1741.03 (7)
C15—C14—C13124.61 (13)C22—Fe1—C17107.36 (10)
C18—C14—Fe169.53 (8)C14—Fe1—C1768.79 (6)
C15—C14—Fe169.76 (8)C21—Fe1—C15121.12 (10)
C13—C14—Fe1127.05 (10)C20—Fe1—C15108.87 (9)
C16—C15—C14108.25 (14)C18—Fe1—C1568.64 (7)
C16—C15—Fe169.87 (9)C22—Fe1—C15155.06 (10)
C14—C15—Fe169.39 (8)C14—Fe1—C1540.86 (6)
C16—C15—H15125.9C17—Fe1—C1568.37 (7)
C14—C15—H15125.9C21—Fe1—C1967.84 (10)
Fe1—C15—H15125.9C20—Fe1—C1940.24 (10)
C17—C16—C15107.91 (14)C18—Fe1—C19119.26 (8)
C17—C16—Fe169.42 (10)C22—Fe1—C1967.50 (11)
C15—C16—Fe169.44 (9)C14—Fe1—C19107.98 (8)
C17—C16—H16126.0C17—Fe1—C19153.65 (10)
C15—C16—H16126.0C15—Fe1—C19127.29 (9)
Fe1—C16—H16126.0C21—Fe1—C2367.31 (11)
C16—C17—C18108.28 (14)C20—Fe1—C2367.44 (11)
C16—C17—Fe170.08 (10)C18—Fe1—C23107.28 (9)
C18—C17—Fe169.39 (9)C22—Fe1—C2340.03 (11)
C16—C17—H17125.9C14—Fe1—C23125.93 (8)
C18—C17—H17125.9C17—Fe1—C23119.59 (10)
Fe1—C17—H17125.9C15—Fe1—C23163.76 (9)
C14—C18—C17107.77 (15)C19—Fe1—C2339.78 (11)
C14—C18—Fe169.60 (9)C21—Fe1—C16108.59 (9)
C17—C18—Fe169.59 (10)C20—Fe1—C16127.42 (9)
C14—C18—H18126.1C18—Fe1—C1668.68 (8)
C17—C18—H18126.1C22—Fe1—C16120.07 (9)
Fe1—C18—H18126.1C14—Fe1—C1668.74 (6)
C23—C19—C20108.3 (2)C17—Fe1—C1640.50 (8)
C23—C19—Fe170.20 (13)C15—Fe1—C1640.69 (6)
C20—C19—Fe169.55 (12)C19—Fe1—C16164.77 (10)
C23—C19—H19125.8C23—Fe1—C16154.08 (10)
C20—C19—H19125.8
N1—C1—C2—C340.15 (16)C21—C20—Fe1—C19118.0 (2)
C1—C2—C3—C2589.90 (14)C19—C20—Fe1—C2337.12 (15)
C1—C2—C3—C13141.37 (13)C21—C20—Fe1—C2380.86 (18)
C1—C2—C3—C431.00 (15)C19—C20—Fe1—C16167.58 (13)
C25—C3—C4—N1107.73 (13)C21—C20—Fe1—C1674.44 (19)
C2—C3—C4—N110.81 (14)C14—C18—Fe1—C21165.8 (3)
C13—C3—C4—N1129.67 (11)C17—C18—Fe1—C2146.7 (3)
C25—C3—C4—C523.13 (16)C14—C18—Fe1—C2051.6 (2)
C2—C3—C4—C5141.67 (12)C17—C18—Fe1—C20170.7 (2)
C13—C3—C4—C599.47 (13)C14—C18—Fe1—C22165.77 (12)
C25—C3—C4—C12136.22 (12)C17—C18—Fe1—C2275.16 (15)
C2—C3—C4—C12105.25 (12)C17—C18—Fe1—C14119.07 (15)
C13—C3—C4—C1213.62 (13)C14—C18—Fe1—C17119.07 (15)
N1—C4—C5—O349.5 (2)C14—C18—Fe1—C1537.90 (9)
C3—C4—C5—O375.95 (19)C17—C18—Fe1—C1581.18 (11)
C12—C4—C5—O3171.71 (15)C14—C18—Fe1—C1983.87 (13)
N1—C4—C5—C6131.42 (13)C17—C18—Fe1—C19157.05 (13)
C3—C4—C5—C6103.11 (13)C14—C18—Fe1—C23125.43 (12)
C12—C4—C5—C69.24 (15)C17—C18—Fe1—C23115.49 (13)
O3—C5—C6—C11177.09 (16)C14—C18—Fe1—C1681.73 (10)
C4—C5—C6—C113.88 (16)C17—C18—Fe1—C1637.34 (11)
O3—C5—C6—C75.5 (3)C23—C22—Fe1—C21118.6 (3)
C4—C5—C6—C7173.49 (15)C23—C22—Fe1—C2080.45 (19)
C11—C6—C7—C80.4 (2)C21—C22—Fe1—C2038.20 (16)
C5—C6—C7—C8176.70 (16)C23—C22—Fe1—C1874.0 (2)
C6—C7—C8—C90.7 (3)C21—C22—Fe1—C18167.40 (14)
C7—C8—C9—C100.8 (3)C23—C22—Fe1—C1441.3 (4)
C8—C9—C10—C110.3 (3)C21—C22—Fe1—C14160.0 (2)
C9—C10—C11—C61.4 (3)C23—C22—Fe1—C17115.62 (18)
C9—C10—C11—C12178.98 (17)C21—C22—Fe1—C17125.74 (16)
C7—C6—C11—C101.5 (2)C23—C22—Fe1—C15168.48 (19)
C5—C6—C11—C10176.04 (15)C21—C22—Fe1—C1549.8 (3)
C7—C6—C11—C12178.83 (14)C23—C22—Fe1—C1936.85 (17)
C5—C6—C11—C123.63 (17)C21—C22—Fe1—C1981.80 (17)
C10—C11—C12—O267.4 (2)C21—C22—Fe1—C23118.6 (3)
C6—C11—C12—O2112.98 (14)C23—C22—Fe1—C16157.91 (16)
C10—C11—C12—O154.7 (2)C21—C22—Fe1—C1683.44 (18)
C6—C11—C12—O1124.92 (13)C18—C14—Fe1—C21169.91 (19)
C10—C11—C12—C4170.31 (16)C15—C14—Fe1—C2150.9 (2)
C6—C11—C12—C49.33 (16)C13—C14—Fe1—C2167.8 (2)
N1—C4—C12—O216.34 (16)C18—C14—Fe1—C20156.55 (12)
C5—C4—C12—O2110.01 (13)C15—C14—Fe1—C2084.43 (12)
C3—C4—C12—O2129.34 (12)C13—C14—Fe1—C2034.27 (16)
N1—C4—C12—O1102.61 (13)C15—C14—Fe1—C18119.02 (13)
C5—C4—C12—O1131.04 (12)C13—C14—Fe1—C18122.28 (17)
C3—C4—C12—O110.39 (14)C18—C14—Fe1—C2242.3 (3)
N1—C4—C12—C11137.32 (12)C15—C14—Fe1—C22161.3 (3)
C5—C4—C12—C1110.96 (14)C13—C14—Fe1—C2280.0 (3)
C3—C4—C12—C11109.68 (12)C18—C14—Fe1—C1737.98 (11)
C25—C3—C13—O1156.23 (11)C15—C14—Fe1—C1781.04 (10)
C2—C3—C13—O176.78 (13)C13—C14—Fe1—C17160.26 (15)
C4—C3—C13—O133.64 (12)C18—C14—Fe1—C15119.02 (13)
C25—C3—C13—C1483.85 (14)C13—C14—Fe1—C15118.70 (16)
C2—C3—C13—C1443.14 (16)C18—C14—Fe1—C19114.22 (12)
C4—C3—C13—C14153.56 (12)C15—C14—Fe1—C19126.75 (11)
O1—C13—C14—C1823.8 (2)C13—C14—Fe1—C198.06 (15)
C3—C13—C14—C1892.97 (18)C18—C14—Fe1—C2373.92 (14)
O1—C13—C14—C15157.47 (14)C15—C14—Fe1—C23167.05 (13)
C3—C13—C14—C1585.74 (17)C13—C14—Fe1—C2348.36 (18)
O1—C13—C14—Fe167.80 (15)C18—C14—Fe1—C1681.57 (11)
C3—C13—C14—Fe1175.41 (10)C15—C14—Fe1—C1637.45 (10)
C18—C14—C15—C160.10 (18)C13—C14—Fe1—C16156.15 (15)
C13—C14—C15—C16179.03 (13)C16—C17—Fe1—C2175.88 (16)
Fe1—C14—C15—C1659.25 (11)C18—C17—Fe1—C21164.60 (14)
C18—C14—C15—Fe159.36 (11)C16—C17—Fe1—C2045.2 (4)
C13—C14—C15—Fe1121.72 (14)C18—C17—Fe1—C20164.8 (3)
C14—C15—C16—C170.01 (19)C16—C17—Fe1—C18119.52 (14)
Fe1—C15—C16—C1758.96 (12)C16—C17—Fe1—C22116.25 (13)
C14—C15—C16—Fe158.95 (11)C18—C17—Fe1—C22124.22 (13)
C15—C16—C17—C180.1 (2)C16—C17—Fe1—C1481.68 (10)
Fe1—C16—C17—C1859.06 (12)C18—C17—Fe1—C1437.84 (10)
C15—C16—C17—Fe158.97 (12)C16—C17—Fe1—C1537.64 (10)
C15—C14—C18—C170.16 (18)C18—C17—Fe1—C1581.88 (11)
C13—C14—C18—C17179.04 (14)C16—C17—Fe1—C19169.54 (17)
Fe1—C14—C18—C1759.34 (12)C18—C17—Fe1—C1950.0 (2)
C15—C14—C18—Fe159.49 (11)C16—C17—Fe1—C23158.08 (11)
C13—C14—C18—Fe1121.62 (15)C18—C17—Fe1—C2382.39 (13)
C16—C17—C18—C140.2 (2)C18—C17—Fe1—C16119.52 (14)
Fe1—C17—C18—C1459.34 (11)C16—C15—Fe1—C2182.47 (15)
C16—C17—C18—Fe159.49 (13)C14—C15—Fe1—C21157.90 (12)
C23—C19—C20—C210.0 (2)C16—C15—Fe1—C20125.98 (13)
Fe1—C19—C20—C2159.75 (15)C14—C15—Fe1—C20114.40 (11)
C23—C19—C20—Fe159.70 (16)C16—C15—Fe1—C1881.72 (11)
C19—C20—C21—C220.3 (3)C14—C15—Fe1—C1837.91 (9)
Fe1—C20—C21—C2260.03 (17)C16—C15—Fe1—C2247.3 (3)
C19—C20—C21—Fe160.35 (15)C14—C15—Fe1—C22166.9 (2)
C20—C21—C22—C230.5 (3)C16—C15—Fe1—C14119.63 (14)
Fe1—C21—C22—C2360.19 (16)C16—C15—Fe1—C1737.47 (11)
C20—C21—C22—Fe159.72 (16)C14—C15—Fe1—C1782.15 (10)
C20—C19—C23—C220.2 (3)C16—C15—Fe1—C19167.07 (12)
Fe1—C19—C23—C2259.05 (17)C14—C15—Fe1—C1973.31 (13)
C20—C19—C23—Fe159.30 (15)C16—C15—Fe1—C23160.1 (3)
C21—C22—C23—C190.4 (3)C14—C15—Fe1—C2340.4 (4)
Fe1—C22—C23—C1959.27 (16)C14—C15—Fe1—C16119.63 (14)
C21—C22—C23—Fe159.71 (16)C23—C19—Fe1—C2180.70 (18)
C2—C3—C25—O49.2 (2)C20—C19—Fe1—C2138.73 (18)
C13—C3—C25—O4138.41 (17)C23—C19—Fe1—C20119.4 (2)
C4—C3—C25—O4105.12 (18)C23—C19—Fe1—C1881.91 (15)
C2—C3—C25—O5171.14 (12)C20—C19—Fe1—C18158.67 (15)
C13—C3—C25—O541.90 (16)C23—C19—Fe1—C2237.07 (16)
C4—C3—C25—O574.57 (15)C20—C19—Fe1—C2282.36 (18)
C5—C4—N1—C2417.7 (2)C23—C19—Fe1—C14125.06 (14)
C3—C4—N1—C24147.54 (16)C20—C19—Fe1—C14115.51 (16)
C12—C4—N1—C24101.35 (17)C23—C19—Fe1—C1746.7 (2)
C5—C4—N1—C1115.47 (15)C20—C19—Fe1—C17166.12 (17)
C3—C4—N1—C114.38 (16)C23—C19—Fe1—C15166.27 (13)
C12—C4—N1—C1125.48 (13)C20—C19—Fe1—C1574.30 (18)
C2—C1—N1—C434.20 (17)C20—C19—Fe1—C23119.4 (2)
C2—C1—N1—C24169.08 (16)C23—C19—Fe1—C16160.0 (3)
C14—C13—O1—C12165.76 (11)C20—C19—Fe1—C1640.6 (4)
C3—C13—O1—C1242.39 (13)C19—C23—Fe1—C2182.13 (17)
O2—C12—O1—C13155.22 (12)C22—C23—Fe1—C2137.89 (19)
C11—C12—O1—C1381.24 (14)C19—C23—Fe1—C2037.54 (15)
C4—C12—O1—C1333.29 (14)C22—C23—Fe1—C2082.5 (2)
O4—C25—O5—C263.9 (2)C19—C23—Fe1—C18115.24 (14)
C3—C25—O5—C26175.77 (15)C22—C23—Fe1—C18124.75 (18)
C22—C21—Fe1—C20118.9 (2)C19—C23—Fe1—C22120.0 (2)
C22—C21—Fe1—C1837.1 (4)C19—C23—Fe1—C1474.06 (16)
C20—C21—Fe1—C18156.0 (3)C22—C23—Fe1—C14165.93 (16)
C20—C21—Fe1—C22118.9 (2)C19—C23—Fe1—C17158.19 (13)
C22—C21—Fe1—C14165.75 (18)C22—C23—Fe1—C1781.80 (19)
C20—C21—Fe1—C1446.8 (3)C19—C23—Fe1—C1542.5 (4)
C22—C21—Fe1—C1773.26 (18)C22—C23—Fe1—C15162.5 (3)
C20—C21—Fe1—C17167.82 (14)C22—C23—Fe1—C19120.0 (2)
C22—C21—Fe1—C15157.89 (14)C19—C23—Fe1—C16168.13 (17)
C20—C21—Fe1—C1583.18 (16)C22—C23—Fe1—C1648.1 (3)
C22—C21—Fe1—C1980.90 (17)C17—C16—Fe1—C21124.13 (14)
C20—C21—Fe1—C1938.03 (15)C15—C16—Fe1—C21116.43 (15)
C22—C21—Fe1—C2337.71 (17)C17—C16—Fe1—C20165.95 (13)
C20—C21—Fe1—C2381.21 (17)C15—C16—Fe1—C2074.62 (15)
C22—C21—Fe1—C16114.90 (16)C17—C16—Fe1—C1837.82 (10)
C20—C21—Fe1—C16126.18 (15)C15—C16—Fe1—C1881.62 (11)
C19—C20—Fe1—C21118.0 (2)C17—C16—Fe1—C2281.54 (15)
C19—C20—Fe1—C1846.2 (3)C15—C16—Fe1—C22159.02 (14)
C21—C20—Fe1—C18164.15 (19)C17—C16—Fe1—C1481.83 (10)
C19—C20—Fe1—C2280.49 (17)C15—C16—Fe1—C1437.61 (10)
C21—C20—Fe1—C2237.49 (16)C15—C16—Fe1—C17119.44 (14)
C19—C20—Fe1—C1482.48 (16)C17—C16—Fe1—C15119.44 (14)
C21—C20—Fe1—C14159.54 (15)C17—C16—Fe1—C19162.1 (3)
C19—C20—Fe1—C17156.9 (3)C15—C16—Fe1—C1942.7 (3)
C21—C20—Fe1—C1738.9 (4)C17—C16—Fe1—C2348.0 (2)
C19—C20—Fe1—C15125.96 (14)C15—C16—Fe1—C23167.39 (19)
C21—C20—Fe1—C15116.06 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.463.157 (2)131
C15—H15···O3ii0.982.523.303 (2)137
C16—H16···O4ii0.982.593.547 (2)166
C13—H13···O50.982.402.820 (2)105
C24—H24B···O30.962.423.014 (3)120
O2—H2C···N10.822.152.6414 (19)119
C2—H2A···O40.972.422.761 (2)100
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C21H20NO5)]
Mr487.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7292 (2), 24.7713 (7), 11.8120 (4)
β (°) 93.445 (1)
V3)2257.47 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.816, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
32884, 7917, 6016
Rint0.028
(sin θ/λ)max1)0.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.123, 1.05
No. of reflections7917
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.35

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.463.157 (2)131
C15—H15···O3ii0.982.523.303 (2)137
C16—H16···O4ii0.982.593.547 (2)166
C13—H13···O50.982.402.820 (2)105
C24—H24B···O30.962.423.014 (3)120
O2—H2C···N10.822.152.6414 (19)119
C2—H2A···O40.972.422.761 (2)100
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

ETSK thanks Professors M. N. Ponnusamy and D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks Dr Babu Varghese, SAIF, IIT-Madras, and the SRM management for their support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaar, C. R., Carbray, L. P., Jennings, M. C. & Puddephatt, R. J. (2000). J. Am. Chem. Soc. 122, 176–177.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlaser, H. U. & Schmidt, E. (2004). In Asymmetric Catalysis on Industrial Scale. Weinheim: Wiley–VCH.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGomez Arrayas, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674–7715.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, J. J. & Sames, D. (2000). J. Am. Chem. Soc. 122, 6321–6322.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStaveren, D. R. V. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931–5986.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m687-m688
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds