metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(pyridine-2-carboxyl­ato-κ2N,O)platinum(IV) aceto­nitrile solvate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and bInstitute of Basic Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 12 May 2009; accepted 13 May 2009; online 20 May 2009)

The asymmetric unit of the title compound, [PtCl2(C6H4NO2)2]·CH3CN, contains a neutral PtIV complex and an acetonitrile solvent mol­ecule. In the complex, the Pt4+ atom is six-coordinated in a distorted octa­hedral environment by two N atoms and two O atoms from two pyridine­carboxyl­ate (pic) ligands and two Cl atoms. The Cl atoms are cis with respect to each other. The compound displays inter- and intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonding.

Related literature

For the synthesis and structure of the Pt(IV)-pic complex, [PtCl4(pic)], see: Griffith et al. (2005[Griffith, D., Lyssenko, K., Jensen, P., Kruger, P. E. & Marmion, C. J. (2005). Dalton Trans. pp. 956-961.]). For a related Pt(II)-dipicolinate complex, see: Goodgame et al. (1995[Goodgame, D. M. L., Müller, T. E. & Williams, D. J. (1995). Polyhedron, 14, 2557-2559.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C6H4NO2)2]·C2H3N

  • Mr = 551.25

  • Monoclinic, P 21 /c

  • a = 6.103 (3) Å

  • b = 27.988 (12) Å

  • c = 9.823 (4) Å

  • β = 91.076 (7)°

  • V = 1677.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.71 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.203, Tmax = 0.271

  • 9732 measured reflections

  • 3437 independent reflections

  • 3051 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.052

  • S = 1.11

  • 3437 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—O1 1.999 (3)
Pt1—N2 2.013 (3)
Pt1—O3 2.022 (3)
Pt1—N1 2.025 (4)
Pt1—Cl2 2.2910 (14)
Pt1—Cl1 2.3003 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.45 3.207 (7) 139
C7—H7⋯Cl1ii 0.93 2.75 3.583 (5) 150
C7—H7⋯Cl2 0.93 2.76 3.334 (5) 121
C10—H10⋯O4iii 0.93 2.42 3.223 (6) 145
C13—H13A⋯O2iv 0.96 2.43 3.256 (8) 144
C13—H13B⋯Cl1v 0.96 2.84 3.625 (7) 140
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, [PtCl2(C6H4NO2)2].CH3CN, contains a neutral PtIV complex and a CH3CN solvent molecule (Fig. 1). In the complex, the Pt4+ ion is six-coordinated in a distorted octahedral environment by two N atoms and two O atoms from two pyridinecarboxylate (pic) anion ligands and two Cl atoms. The Cl atoms are disposed in the cis position. The main contributions to the distortion are the tight O—Pt—N chelate angles (82.32 (14)° and 82.16 (13)°), which result in non-linear trans axes (<Cl1—Pt1—N1 = 175.68 (10)°, <Cl2—Pt1—O3 = 178.67 (10)° and <O1—Pt1—N2 = 173.39 (14)°). The different trans effects of the Cl, O and N atoms are not distinct, because the Pt1—Cl, Pt1—O and Pt1—N bond lengths are almost equal (Pt1—Cl: 2.3003 (13) and 2.2910 (14) Å; Pt1—O 1.999 (3) and 2.022 (3) Å; Pt1—N 2.025 (4) and 2.013 (3) Å), respectively (Table 1). The compound displays inter- and intramolecular C—H···O and C—H···Cl hydrogen bonding (Table 2 and Fig. 2). There may also be weak intermolecular π-π interactions between adjacent pyridine rings, with a shortest centroid-centroid distance of 5.223 (4) Å.

Related literature top

For the synthesis and structure of the Pt(IV)-pic complex, [PtCl4(pic)]-, see: Griffith et al. (2005). For a related Pt(II)-dipicolinate complex, see: Goodgame et al. (1995).

Experimental top

A suspension of K2PtCl6 (0.2148 g, 0.442 mmol) and pyridine-2-carboxylic acid (0.2000 g, 1.459 mmol) in H2O (10 ml) was refluxed for 5 h. The formed precipitate was separated by filtration and washed with water (20 ml) and dried under vacuum, to give a pale green powder (0.2304 g). Colorless crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (aromatic) or 0.96 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Dichloridobis(pyridine-2-carboxylato-κ2N,O)platinum(IV) acetonitrile solvate top
Crystal data top
[PtCl2(C6H4NO2)2]·C2H3NF(000) = 1040
Mr = 551.25Dx = 2.182 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 979 reflections
a = 6.103 (3) Åθ = 2.5–25.9°
b = 27.988 (12) ŵ = 8.71 mm1
c = 9.823 (4) ÅT = 293 K
β = 91.076 (7)°Stick, colorless
V = 1677.7 (12) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3437 independent reflections
Radiation source: fine-focus sealed tube3051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 67
Tmin = 0.203, Tmax = 0.271k = 3533
9732 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0126P)2 + 3.1343P]
where P = (Fo2 + 2Fc2)/3
3437 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[PtCl2(C6H4NO2)2]·C2H3NV = 1677.7 (12) Å3
Mr = 551.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.103 (3) ŵ = 8.71 mm1
b = 27.988 (12) ÅT = 293 K
c = 9.823 (4) Å0.20 × 0.15 × 0.15 mm
β = 91.076 (7)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3437 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3051 reflections with I > 2σ(I)
Tmin = 0.203, Tmax = 0.271Rint = 0.025
9732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.11Δρmax = 1.04 e Å3
3437 reflectionsΔρmin = 0.58 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.67421 (3)0.119200 (6)0.082756 (17)0.03061 (6)
Cl10.47415 (19)0.06563 (4)0.04645 (12)0.0421 (3)
Cl20.9275 (2)0.12741 (4)0.08481 (13)0.0454 (3)
O10.5138 (5)0.17577 (11)0.0066 (3)0.0444 (8)
O20.4983 (9)0.25418 (14)0.0228 (6)0.0971 (19)
O30.4557 (5)0.11261 (11)0.2338 (3)0.0389 (7)
O40.3574 (6)0.06264 (14)0.3949 (4)0.0533 (10)
N10.8376 (6)0.17036 (13)0.1894 (4)0.0336 (8)
N20.8101 (6)0.06220 (12)0.1765 (4)0.0297 (8)
C11.0064 (8)0.16447 (16)0.2751 (5)0.0410 (11)
H11.05350.13370.29610.049*
C21.1128 (9)0.20275 (18)0.3335 (5)0.0504 (14)
H21.23200.19800.39230.060*
C31.0415 (10)0.2478 (2)0.3040 (6)0.0610 (16)
H31.11080.27430.34280.073*
C40.8651 (11)0.25356 (19)0.2158 (7)0.0680 (19)
H40.81370.28410.19570.082*
C50.7654 (9)0.21476 (17)0.1578 (5)0.0452 (12)
C60.5793 (10)0.21694 (19)0.0564 (6)0.0550 (15)
C70.9907 (8)0.03922 (17)0.1407 (5)0.0380 (11)
H71.07350.05090.06950.046*
C81.0567 (9)0.00183 (17)0.2081 (5)0.0451 (12)
H81.18410.01760.18320.054*
C90.9325 (10)0.01915 (18)0.3122 (6)0.0520 (14)
H90.97450.04680.35810.062*
C100.7448 (9)0.00483 (18)0.3481 (5)0.0476 (13)
H100.65950.00640.41870.057*
C110.6848 (7)0.04566 (16)0.2781 (4)0.0341 (10)
C120.4840 (8)0.07409 (17)0.3081 (5)0.0386 (11)
N30.7810 (12)0.1214 (2)0.5485 (7)0.091 (2)
C130.4113 (12)0.1411 (2)0.6554 (7)0.0761 (19)
H13A0.37230.17340.63310.114*
H13B0.42260.13760.75250.114*
H13C0.30070.11980.62010.114*
C140.6175 (14)0.1297 (2)0.5963 (7)0.0677 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02912 (10)0.02809 (10)0.03449 (10)0.00214 (7)0.00261 (7)0.00113 (7)
Cl10.0381 (6)0.0414 (6)0.0465 (7)0.0055 (5)0.0040 (5)0.0048 (5)
Cl20.0479 (7)0.0448 (7)0.0439 (7)0.0037 (5)0.0083 (5)0.0066 (5)
O10.044 (2)0.0332 (18)0.055 (2)0.0085 (15)0.0173 (17)0.0024 (15)
O20.122 (4)0.035 (2)0.131 (4)0.026 (2)0.079 (4)0.002 (2)
O30.0307 (17)0.0435 (18)0.0428 (19)0.0064 (14)0.0072 (14)0.0001 (15)
O40.048 (2)0.063 (2)0.049 (2)0.0049 (18)0.0169 (18)0.0001 (18)
N10.033 (2)0.030 (2)0.037 (2)0.0027 (16)0.0055 (17)0.0021 (16)
N20.031 (2)0.0259 (18)0.0325 (19)0.0037 (15)0.0014 (16)0.0002 (15)
C10.040 (3)0.031 (2)0.052 (3)0.002 (2)0.009 (2)0.001 (2)
C20.051 (3)0.044 (3)0.055 (3)0.002 (2)0.019 (3)0.006 (2)
C30.069 (4)0.039 (3)0.074 (4)0.005 (3)0.023 (3)0.010 (3)
C40.084 (5)0.027 (3)0.092 (5)0.009 (3)0.031 (4)0.009 (3)
C50.052 (3)0.030 (3)0.053 (3)0.010 (2)0.013 (3)0.000 (2)
C60.064 (4)0.036 (3)0.064 (4)0.013 (3)0.024 (3)0.001 (3)
C70.036 (3)0.038 (3)0.040 (3)0.003 (2)0.003 (2)0.002 (2)
C80.044 (3)0.037 (3)0.055 (3)0.010 (2)0.007 (2)0.004 (2)
C90.065 (4)0.034 (3)0.057 (3)0.004 (3)0.011 (3)0.006 (2)
C100.060 (4)0.042 (3)0.041 (3)0.002 (3)0.002 (3)0.012 (2)
C110.036 (3)0.035 (2)0.032 (2)0.005 (2)0.001 (2)0.0020 (19)
C120.038 (3)0.043 (3)0.035 (3)0.003 (2)0.002 (2)0.009 (2)
N30.097 (5)0.099 (5)0.078 (4)0.003 (4)0.014 (4)0.009 (4)
C130.097 (6)0.065 (4)0.067 (4)0.004 (4)0.001 (4)0.012 (3)
C140.092 (6)0.057 (4)0.053 (4)0.002 (4)0.017 (4)0.002 (3)
Geometric parameters (Å, º) top
Pt1—O11.999 (3)C3—H30.9300
Pt1—N22.013 (3)C4—C51.364 (7)
Pt1—O32.022 (3)C4—H40.9300
Pt1—N12.025 (4)C5—C61.498 (7)
Pt1—Cl22.2910 (14)C7—C81.382 (6)
Pt1—Cl12.3003 (13)C7—H70.9300
O1—C61.311 (6)C8—C91.373 (7)
O2—C61.197 (6)C8—H80.9300
O3—C121.312 (6)C9—C101.379 (7)
O4—C121.205 (6)C9—H90.9300
N1—C11.328 (6)C10—C111.379 (6)
N1—C51.352 (6)C10—H100.9300
N2—C71.329 (6)C11—C121.495 (6)
N2—C111.350 (5)N3—C141.134 (10)
C1—C21.373 (6)C13—C141.432 (10)
C1—H10.9300C13—H13A0.9600
C2—C31.364 (7)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.379 (8)
O1—Pt1—N2173.39 (14)C5—C4—H4119.8
O1—Pt1—O391.24 (14)C3—C4—H4119.8
N2—Pt1—O382.16 (13)N1—C5—C4119.7 (5)
O1—Pt1—N182.32 (14)N1—C5—C6115.4 (4)
N2—Pt1—N197.41 (15)C4—C5—C6124.9 (5)
O3—Pt1—N190.57 (14)O2—C6—O1122.7 (5)
O1—Pt1—Cl289.09 (11)O2—C6—C5121.5 (5)
N2—Pt1—Cl297.51 (11)O1—C6—C5115.7 (4)
O3—Pt1—Cl2178.67 (10)N2—C7—C8120.7 (5)
N1—Pt1—Cl288.19 (11)N2—C7—H7119.6
O1—Pt1—Cl193.37 (10)C8—C7—H7119.6
N2—Pt1—Cl186.89 (11)C9—C8—C7119.4 (5)
O3—Pt1—Cl189.70 (10)C9—C8—H8120.3
N1—Pt1—Cl1175.68 (10)C7—C8—H8120.3
Cl2—Pt1—Cl191.57 (5)C8—C9—C10119.4 (5)
C6—O1—Pt1114.4 (3)C8—C9—H9120.3
C12—O3—Pt1113.7 (3)C10—C9—H9120.3
C1—N1—C5120.3 (4)C9—C10—C11119.3 (5)
C1—N1—Pt1127.5 (3)C9—C10—H10120.3
C5—N1—Pt1112.1 (3)C11—C10—H10120.3
C7—N2—C11120.9 (4)N2—C11—C10120.2 (4)
C7—N2—Pt1126.8 (3)N2—C11—C12116.2 (4)
C11—N2—Pt1112.1 (3)C10—C11—C12123.6 (4)
N1—C1—C2121.5 (4)O4—C12—O3122.2 (5)
N1—C1—H1119.2O4—C12—C11122.5 (5)
C2—C1—H1119.2O3—C12—C11115.3 (4)
C3—C2—C1119.2 (5)C14—C13—H13A109.5
C3—C2—H2120.4C14—C13—H13B109.5
C1—C2—H2120.4H13A—C13—H13B109.5
C2—C3—C4118.9 (5)C14—C13—H13C109.5
C2—C3—H3120.6H13A—C13—H13C109.5
C4—C3—H3120.6H13B—C13—H13C109.5
C5—C4—C3120.5 (5)N3—C14—C13178.8 (8)
O3—Pt1—O1—C689.9 (4)C1—N1—C5—C40.8 (8)
N1—Pt1—O1—C60.5 (4)Pt1—N1—C5—C4176.9 (5)
Cl2—Pt1—O1—C688.8 (4)C1—N1—C5—C6177.9 (5)
Cl1—Pt1—O1—C6179.7 (4)Pt1—N1—C5—C61.8 (6)
O1—Pt1—O3—C12173.1 (3)C3—C4—C5—N11.3 (10)
N2—Pt1—O3—C127.2 (3)C3—C4—C5—C6177.3 (6)
N1—Pt1—O3—C12104.6 (3)Pt1—O1—C6—O2179.1 (6)
Cl1—Pt1—O3—C1279.7 (3)Pt1—O1—C6—C51.6 (7)
O1—Pt1—N1—C1176.5 (4)N1—C5—C6—O2178.3 (6)
N2—Pt1—N1—C110.1 (4)C4—C5—C6—O23.0 (11)
O3—Pt1—N1—C192.3 (4)N1—C5—C6—O12.4 (8)
Cl2—Pt1—N1—C187.2 (4)C4—C5—C6—O1176.3 (6)
O1—Pt1—N1—C50.8 (3)C11—N2—C7—C81.0 (7)
N2—Pt1—N1—C5174.1 (3)Pt1—N2—C7—C8174.9 (3)
O3—Pt1—N1—C592.0 (4)N2—C7—C8—C90.7 (7)
Cl2—Pt1—N1—C588.5 (3)C7—C8—C9—C100.3 (8)
O3—Pt1—N2—C7179.5 (4)C8—C9—C10—C110.3 (8)
N1—Pt1—N2—C789.9 (4)C7—N2—C11—C101.0 (7)
Cl2—Pt1—N2—C70.8 (4)Pt1—N2—C11—C10175.7 (4)
Cl1—Pt1—N2—C790.4 (4)C7—N2—C11—C12179.2 (4)
O3—Pt1—N2—C116.2 (3)Pt1—N2—C11—C124.5 (5)
N1—Pt1—N2—C1195.7 (3)C9—C10—C11—N20.7 (7)
Cl2—Pt1—N2—C11175.1 (3)C9—C10—C11—C12179.6 (5)
Cl1—Pt1—N2—C1184.0 (3)Pt1—O3—C12—O4173.6 (4)
C5—N1—C1—C20.3 (8)Pt1—O3—C12—C116.7 (5)
Pt1—N1—C1—C2175.1 (4)N2—C11—C12—O4178.8 (4)
N1—C1—C2—C30.9 (8)C10—C11—C12—O41.4 (7)
C1—C2—C3—C40.3 (9)N2—C11—C12—O31.5 (6)
C2—C3—C4—C50.8 (10)C10—C11—C12—O3178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.453.207 (7)139
C7—H7···Cl1ii0.932.753.583 (5)150
C7—H7···Cl20.932.763.334 (5)121
C10—H10···O4iii0.932.423.223 (6)145
C13—H13A···O2iv0.962.433.256 (8)144
C13—H13B···Cl1v0.962.843.625 (7)140
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[PtCl2(C6H4NO2)2]·C2H3N
Mr551.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.103 (3), 27.988 (12), 9.823 (4)
β (°) 91.076 (7)
V3)1677.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)8.71
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.203, 0.271
No. of measured, independent and
observed [I > 2σ(I)] reflections
9732, 3437, 3051
Rint0.025
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.11
No. of reflections3437
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.58

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—O11.999 (3)Pt1—N12.025 (4)
Pt1—N22.013 (3)Pt1—Cl22.2910 (14)
Pt1—O32.022 (3)Pt1—Cl12.3003 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.453.207 (7)138.7
C7—H7···Cl1ii0.932.753.583 (5)149.9
C7—H7···Cl20.932.763.334 (5)120.7
C10—H10···O4iii0.932.423.223 (6)144.9
C13—H13A···O2iv0.962.433.256 (8)144.0
C13—H13B···Cl1v0.962.843.625 (7)140.2
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y, z+1.
 

Acknowledgements

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoodgame, D. M. L., Müller, T. E. & Williams, D. J. (1995). Polyhedron, 14, 2557–2559.  CSD CrossRef CAS Web of Science Google Scholar
First citationGriffith, D., Lyssenko, K., Jensen, P., Kruger, P. E. & Marmion, C. J. (2005). Dalton Trans. pp. 956–961.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds