organic compounds
2,5-Bis(bromomethyl)biphenyl
aDepartment of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, C14H12Br2, the Br atoms lie on opposite sides of their ring plane. The biphenyl interplanar angle is 53.52 (8)°. The packing is characterized by several H⋯Br contacts to each Br atom, but at long distances of 3.07–3.43 Å.
Related literature
For the structures of bromomethyl-substituted aromatic ring systems, see: Jones & Kuś (2005, 2007); Jones et al. (2007). For the synthesis, see: Czuchajowski & Zemanek (1990); For a related structure with a similar conformation, see: Obrey et al. (2002). For the phenomenon of tertiary contacts, see: Du Mont et al. (2008);
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809018066/bt2951sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018066/bt2951Isup2.hkl
The title compound was obtained from 2,5-dimethylbiphenyl according to the method of Czuchajowski & Zemanek (1990). The analytical and spectroscopic data are consistent with the literature. Single crystals were grown by slow evaporation of a hexane solution. NMR data for (1): 1H NMR (CDCl3, 400 MHz): δ 7.52 (d, 1H), 7.50–7.39 (m, 6H), 7.29 (d, 1H), 4.50 (s, 2H), 4.44(s, 2H); 13C NMR (100 MHz): δ 142.54, 139.57, 138.07, 135.46, 131.53, 131.03, 128.94, 128.61, 128.44, 127.77, 32.75, 31.58.
H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic) or 0.99 Å (CH2) Å; Uiso(H) values were fixed at 1.2Ueq of the parent C atom. Largest difference peaks of ±1.0 e Å-3 near the bromine atoms may be attributed to residual absorption errors.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The title compound in the crystal. Displacement ellipsoids represent 50% probability levels. | |
Fig. 2. Packing diagram of the title compound viewed parallel to the short b axis. |
C14H12Br2 | F(000) = 1328 |
Mr = 340.06 | Dx = 1.799 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 33.084 (4) Å | Cell parameters from 6730 reflections |
b = 4.3354 (6) Å | θ = 2.3–28.8° |
c = 18.017 (2) Å | µ = 6.43 mm−1 |
β = 103.702 (4)° | T = 133 K |
V = 2510.7 (5) Å3 | Prism, colourless |
Z = 8 | 0.25 × 0.10 × 0.10 mm |
Bruker SMART 1000 CCD area-detector diffractometer | 3120 independent reflections |
Radiation source: fine-focus sealed tube | 2518 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 8.192 pixels mm-1 | θmax = 28.3°, θmin = 1.3° |
ϕ and ω scans | h = −44→44 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −5→5 |
Tmin = 0.316, Tmax = 0.566 | l = −24→24 |
18269 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0515P)2 + 1.9201P] where P = (Fo2 + 2Fc2)/3 |
3120 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −1.00 e Å−3 |
C14H12Br2 | V = 2510.7 (5) Å3 |
Mr = 340.06 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 33.084 (4) Å | µ = 6.43 mm−1 |
b = 4.3354 (6) Å | T = 133 K |
c = 18.017 (2) Å | 0.25 × 0.10 × 0.10 mm |
β = 103.702 (4)° |
Bruker SMART 1000 CCD area-detector diffractometer | 3120 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2518 reflections with I > 2σ(I) |
Tmin = 0.316, Tmax = 0.566 | Rint = 0.040 |
18269 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.00 e Å−3 |
3120 reflections | Δρmin = −1.00 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.219743 (8) | 0.60712 (7) | 0.152339 (16) | 0.02600 (10) | |
Br2 | −0.025878 (8) | 0.25836 (8) | 0.108852 (19) | 0.03229 (11) | |
C1 | 0.11964 (8) | 0.5306 (6) | 0.22477 (14) | 0.0176 (5) | |
C2 | 0.13425 (8) | 0.6193 (6) | 0.16080 (15) | 0.0179 (5) | |
C3 | 0.11266 (8) | 0.5205 (7) | 0.08827 (15) | 0.0209 (5) | |
H3 | 0.1219 | 0.5856 | 0.0447 | 0.025* | |
C4 | 0.07831 (9) | 0.3310 (7) | 0.07839 (17) | 0.0244 (6) | |
H4 | 0.0647 | 0.2621 | 0.0287 | 0.029* | |
C5 | 0.06355 (8) | 0.2407 (6) | 0.14127 (17) | 0.0222 (6) | |
C6 | 0.08387 (8) | 0.3445 (7) | 0.21324 (16) | 0.0209 (6) | |
H6 | 0.0733 | 0.2883 | 0.2560 | 0.025* | |
C7 | 0.17006 (8) | 0.8325 (7) | 0.16619 (16) | 0.0211 (6) | |
H7A | 0.1765 | 0.9347 | 0.2168 | 0.025* | |
H7B | 0.1625 | 0.9942 | 0.1265 | 0.025* | |
C8 | 0.02710 (8) | 0.0280 (7) | 0.13151 (19) | 0.0304 (7) | |
H8A | 0.0294 | −0.0937 | 0.1788 | 0.037* | |
H8B | 0.0273 | −0.1176 | 0.0893 | 0.037* | |
C11 | 0.14006 (8) | 0.6257 (7) | 0.30405 (14) | 0.0187 (5) | |
C12 | 0.18247 (9) | 0.5758 (7) | 0.33539 (16) | 0.0247 (6) | |
H12 | 0.1989 | 0.4783 | 0.3056 | 0.030* | |
C13 | 0.20058 (9) | 0.6669 (8) | 0.40922 (17) | 0.0300 (7) | |
H13 | 0.2293 | 0.6288 | 0.4300 | 0.036* | |
C14 | 0.17707 (10) | 0.8145 (8) | 0.45354 (17) | 0.0306 (7) | |
H14 | 0.1898 | 0.8822 | 0.5038 | 0.037* | |
C15 | 0.13489 (9) | 0.8614 (8) | 0.42342 (16) | 0.0279 (7) | |
H15 | 0.1186 | 0.9615 | 0.4532 | 0.033* | |
C16 | 0.11642 (9) | 0.7626 (7) | 0.34998 (16) | 0.0225 (6) | |
H16 | 0.0873 | 0.7883 | 0.3306 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01373 (14) | 0.03068 (18) | 0.03439 (16) | −0.00368 (11) | 0.00730 (10) | −0.00446 (13) |
Br2 | 0.01203 (15) | 0.0309 (2) | 0.0514 (2) | −0.00186 (11) | 0.00244 (12) | 0.00305 (14) |
C1 | 0.0114 (11) | 0.0171 (13) | 0.0231 (12) | 0.0036 (10) | 0.0018 (9) | 0.0018 (11) |
C2 | 0.0130 (11) | 0.0162 (13) | 0.0236 (12) | 0.0016 (10) | 0.0027 (9) | 0.0000 (11) |
C3 | 0.0177 (12) | 0.0208 (14) | 0.0234 (12) | 0.0028 (11) | 0.0036 (10) | 0.0026 (11) |
C4 | 0.0165 (13) | 0.0260 (15) | 0.0273 (14) | 0.0032 (11) | −0.0013 (10) | −0.0023 (12) |
C5 | 0.0120 (12) | 0.0158 (14) | 0.0371 (15) | 0.0029 (10) | 0.0025 (11) | −0.0001 (12) |
C6 | 0.0135 (12) | 0.0208 (14) | 0.0278 (13) | 0.0025 (10) | 0.0033 (10) | 0.0051 (11) |
C7 | 0.0174 (13) | 0.0201 (14) | 0.0264 (13) | 0.0016 (11) | 0.0064 (10) | 0.0013 (11) |
C8 | 0.0137 (13) | 0.0213 (15) | 0.0528 (19) | 0.0011 (12) | 0.0009 (12) | 0.0013 (14) |
C11 | 0.0139 (12) | 0.0221 (14) | 0.0194 (12) | 0.0007 (10) | 0.0027 (9) | 0.0045 (11) |
C12 | 0.0162 (13) | 0.0326 (17) | 0.0252 (13) | 0.0037 (12) | 0.0049 (10) | −0.0003 (12) |
C13 | 0.0156 (13) | 0.045 (2) | 0.0266 (14) | 0.0033 (13) | −0.0003 (11) | 0.0033 (14) |
C14 | 0.0276 (16) | 0.0415 (19) | 0.0209 (13) | −0.0006 (14) | 0.0018 (11) | 0.0002 (13) |
C15 | 0.0260 (15) | 0.0366 (18) | 0.0233 (13) | 0.0043 (13) | 0.0104 (11) | 0.0026 (13) |
C16 | 0.0174 (13) | 0.0252 (16) | 0.0254 (13) | 0.0055 (11) | 0.0059 (10) | 0.0057 (12) |
Br1—C7 | 1.978 (3) | C14—C15 | 1.387 (4) |
Br2—C8 | 1.974 (3) | C15—C16 | 1.387 (4) |
C1—C2 | 1.405 (4) | C3—H3 | 0.9500 |
C1—C6 | 1.407 (4) | C4—H4 | 0.9500 |
C1—C11 | 1.486 (4) | C6—H6 | 0.9500 |
C2—C3 | 1.400 (4) | C7—H7A | 0.9900 |
C2—C7 | 1.487 (4) | C7—H7B | 0.9900 |
C3—C4 | 1.379 (4) | C8—H8A | 0.9900 |
C4—C5 | 1.392 (4) | C8—H8B | 0.9900 |
C5—C6 | 1.387 (4) | C12—H12 | 0.9500 |
C5—C8 | 1.495 (4) | C13—H13 | 0.9500 |
C11—C16 | 1.398 (4) | C14—H14 | 0.9500 |
C11—C12 | 1.400 (4) | C15—H15 | 0.9500 |
C12—C13 | 1.381 (4) | C16—H16 | 0.9500 |
C13—C14 | 1.395 (4) | ||
C2—C1—C6 | 118.5 (2) | C3—C4—H4 | 120.0 |
C2—C1—C11 | 123.1 (2) | C5—C4—H4 | 120.0 |
C6—C1—C11 | 118.4 (2) | C5—C6—H6 | 119.0 |
C3—C2—C1 | 118.9 (2) | C1—C6—H6 | 119.0 |
C3—C2—C7 | 118.3 (2) | C2—C7—H7A | 109.4 |
C1—C2—C7 | 122.7 (2) | Br1—C7—H7A | 109.4 |
C4—C3—C2 | 121.7 (3) | C2—C7—H7B | 109.4 |
C3—C4—C5 | 120.0 (3) | Br1—C7—H7B | 109.4 |
C6—C5—C4 | 119.0 (3) | H7A—C7—H7B | 108.0 |
C6—C5—C8 | 120.6 (3) | C5—C8—H8A | 109.4 |
C4—C5—C8 | 120.4 (3) | Br2—C8—H8A | 109.4 |
C5—C6—C1 | 121.9 (3) | C5—C8—H8B | 109.4 |
C2—C7—Br1 | 111.0 (2) | Br2—C8—H8B | 109.4 |
C5—C8—Br2 | 111.4 (2) | H8A—C8—H8B | 108.0 |
C16—C11—C12 | 118.3 (3) | C13—C12—H12 | 119.7 |
C16—C11—C1 | 119.7 (2) | C11—C12—H12 | 119.7 |
C12—C11—C1 | 121.9 (2) | C12—C13—H13 | 119.7 |
C13—C12—C11 | 120.6 (3) | C14—C13—H13 | 119.7 |
C12—C13—C14 | 120.6 (3) | C15—C14—H14 | 120.4 |
C15—C14—C13 | 119.3 (3) | C13—C14—H14 | 120.4 |
C14—C15—C16 | 120.2 (3) | C14—C15—H15 | 119.9 |
C15—C16—C11 | 120.9 (3) | C16—C15—H15 | 119.9 |
C4—C3—H3 | 119.1 | C15—C16—H16 | 119.5 |
C2—C3—H3 | 119.1 | C11—C16—H16 | 119.5 |
C6—C1—C2—C3 | 0.2 (4) | C6—C5—C8—Br2 | 93.8 (3) |
C11—C1—C2—C3 | −179.4 (3) | C4—C5—C8—Br2 | −87.9 (3) |
C6—C1—C2—C7 | 175.8 (3) | C2—C1—C11—C16 | 128.0 (3) |
C11—C1—C2—C7 | −3.8 (4) | C6—C1—C11—C16 | −51.6 (4) |
C1—C2—C3—C4 | −2.1 (4) | C2—C1—C11—C12 | −53.6 (4) |
C7—C2—C3—C4 | −177.8 (3) | C6—C1—C11—C12 | 126.8 (3) |
C2—C3—C4—C5 | 1.9 (4) | C16—C11—C12—C13 | −1.6 (4) |
C3—C4—C5—C6 | 0.1 (4) | C1—C11—C12—C13 | 179.9 (3) |
C3—C4—C5—C8 | −178.2 (3) | C11—C12—C13—C14 | −1.0 (5) |
C4—C5—C6—C1 | −1.9 (4) | C12—C13—C14—C15 | 1.8 (5) |
C8—C5—C6—C1 | 176.3 (3) | C13—C14—C15—C16 | −0.1 (5) |
C2—C1—C6—C5 | 1.8 (4) | C14—C15—C16—C11 | −2.5 (5) |
C11—C1—C6—C5 | −178.6 (3) | C12—C11—C16—C15 | 3.3 (4) |
C3—C2—C7—Br1 | −77.2 (3) | C1—C11—C16—C15 | −178.2 (3) |
C1—C2—C7—Br1 | 107.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···Br1i | 0.99 | 3.23 | 3.773 (3) | 116 |
C12—H12···Br1ii | 0.95 | 3.07 | 3.782 (3) | 133 |
C13—H13···Br1ii | 0.95 | 3.37 | 3.931 (3) | 120 |
C13—H13···Br1iii | 0.95 | 3.24 | 3.634 (3) | 107 |
C14—H14···Br1iv | 0.95 | 3.37 | 3.971 (3) | 123 |
C14—H14···Br1v | 0.95 | 3.43 | 4.326 (3) | 157 |
C4—H4···Br2vi | 0.95 | 3.37 | 4.260 (3) | 156 |
C4—H4···Br2vii | 0.95 | 3.26 | 3.845 (3) | 122 |
C6—H6···Br2viii | 0.95 | 3.20 | 4.124 (3) | 166 |
C8—H8B···Br2ix | 0.99 | 3.29 | 3.746 (3) | 110 |
C8—H8A···Br2ix | 0.99 | 3.43 | 3.746 (3) | 101 |
C15—H15···Br2x | 0.95 | 3.27 | 3.913 (3) | 127 |
C16—H16···Br2viii | 0.95 | 3.41 | 3.918 (3) | 116 |
C16—H16···Br2x | 0.95 | 3.24 | 3.898 (3) | 128 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z+1/2; (v) x, −y+2, z+1/2; (vi) −x, −y, −z; (vii) −x, −y+1, −z; (viii) −x, y, −z+1/2; (ix) x, y−1, z; (x) −x, y+1, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H12Br2 |
Mr | 340.06 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 133 |
a, b, c (Å) | 33.084 (4), 4.3354 (6), 18.017 (2) |
β (°) | 103.702 (4) |
V (Å3) | 2510.7 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 6.43 |
Crystal size (mm) | 0.25 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.316, 0.566 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18269, 3120, 2518 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.085, 1.05 |
No. of reflections | 3120 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.00, −1.00 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···Br1i | 0.99 | 3.23 | 3.773 (3) | 116.1 |
C12—H12···Br1ii | 0.95 | 3.07 | 3.782 (3) | 132.8 |
C13—H13···Br1ii | 0.95 | 3.37 | 3.931 (3) | 120.1 |
C13—H13···Br1iii | 0.95 | 3.24 | 3.634 (3) | 106.7 |
C14—H14···Br1iv | 0.95 | 3.37 | 3.971 (3) | 122.8 |
C14—H14···Br1v | 0.95 | 3.43 | 4.326 (3) | 157.3 |
C4—H4···Br2vi | 0.95 | 3.37 | 4.260 (3) | 156.3 |
C4—H4···Br2vii | 0.95 | 3.26 | 3.845 (3) | 122.0 |
C6—H6···Br2viii | 0.95 | 3.20 | 4.124 (3) | 165.8 |
C8—H8B···Br2ix | 0.99 | 3.29 | 3.746 (3) | 109.9 |
C8—H8A···Br2ix | 0.99 | 3.43 | 3.746 (3) | 101.2 |
C15—H15···Br2x | 0.95 | 3.27 | 3.913 (3) | 126.8 |
C16—H16···Br2viii | 0.95 | 3.41 | 3.918 (3) | 115.6 |
C16—H16···Br2x | 0.95 | 3.24 | 3.898 (3) | 127.7 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z+1/2; (v) x, −y+2, z+1/2; (vi) −x, −y, −z; (vii) −x, −y+1, −z; (viii) −x, y, −z+1/2; (ix) x, y−1, z; (x) −x, y+1, −z+1/2. |
References
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Czuchajowski, L. & Zemanek, A. (1990). Pol. J. Chem. 64, 499–504. CAS Google Scholar
Du Mont, W.-W., Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562–4577. Web of Science CSD CrossRef Google Scholar
Jones, P. G. & Kuś, P. (2005). Acta Cryst. E61, o2947–o2948. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jones, P. G. & Kuś, P. (2007). Z. Naturforsch. Teil B, 62, 725–731. CAS Google Scholar
Jones, P. G., Zemanek, A. & Kuś, P. (2007). Acta Cryst. C63, o73–o76. Web of Science CSD CrossRef IUCr Journals Google Scholar
Obrey, S. J., Bott, S. G. & Barron, A. R. (2002). J. Chem. Crystallogr. 32, 205–207. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We are interested in the structures of bromomethyl-substituted aromatic ring systems, compounds that are often used as synthestic intermediates; e.g. various bromomethylbenzenes (Jones & Kuś, 2007), 2,2"- and 2',5'- bis(bromomethyl)-p-terphenyl (Jones & Kuś, 2005; Jones et al., 2007). The packing patterns are often characterized by secondary interactions such as C—H···Br, Br···Br and C—H···π.
As a part of the synthesis of phenyl derivatives of [2.2]paracyclophane (Czuchajowski & Zemanek 1990), 2,5-di(bromomethyl)biphenyl (1) was obtained by bromination of 2,5-dimethylbiphenyl. Here we present its structure (Fig. 1).
Bond lengths and angles may be regarded as normal (e.g. the single bond between the rings is 1.486 (4) Å; ring angles at the substituted atoms C1, C2, C5 are all about 1° less than the ideal 120°). The interplanar angle is 53.52 (8)°. The bromomethyl groups adopt an anti-conformation whereby Br1 and Br2 lie out of their ring plane by 1.680 (4) and -1.736 (4) Å; associated torsion angles are C3—C2—C7—Br1 - 77.2 (3) and C4—C5—C8—Br2 - 87.9 (3)°. A similar conformation was observed in 2,6-di(bromomethyl)biphenyl (Obrey et al., 2002), whereas 2',5'-di(bromomethyl)-p-terphenyl adopts a syn-conformation (Jones et al. 2007).
The packing (Fig. 2) appears at first sight to be characterized by an almost total lack of secondary contacts. The shortest H···Br contact is H12···Br1 3.07 Å (operator 0.5 - x,-1/2 + y,0.5 - z) and there are no other H···Br < 3.19 Å; there are no Br···Br contacts < 4.2 Å and no H···π contacts < 2.95 Å (and these with very narrow angles). Both bromine atoms however are situated in a pocket surrounded by several H atoms; Br1 by six H at distances of 3.07–3.43, Br2 by eight H from 3.20–3.43 Å. This corresponds to the phenomenon of tertiary contacts as postulated by Du Mont et al. (2008).