organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(bromo­meth­yl)biphen­yl

aDepartment of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 12 May 2009; accepted 13 May 2009; online 20 May 2009)

In the title compound, C14H12Br2, the Br atoms lie on opposite sides of their ring plane. The biphenyl inter­planar angle is 53.52 (8)°. The packing is characterized by several H⋯Br contacts to each Br atom, but at long distances of 3.07–3.43 Å.

Related literature

For the structures of bromo­methyl-substituted aromatic ring systems, see: Jones & Kuś (2005[Jones, P. G. & Kuś, P. (2005). Acta Cryst. E61, o2947-o2948.], 2007[Jones, P. G. & Kuś, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.]); Jones et al. (2007[Jones, P. G., Zemanek, A. & Kuś, P. (2007). Acta Cryst. C63, o73-o76.]). For the synthesis, see: Czuchajowski & Zemanek (1990[Czuchajowski, L. & Zemanek, A. (1990). Pol. J. Chem. 64, 499-504.]); For a related structure with a similar conformation, see: Obrey et al. (2002[Obrey, S. J., Bott, S. G. & Barron, A. R. (2002). J. Chem. Crystallogr. 32, 205-207.]). For the phenomenon of tertiary contacts, see: Du Mont et al. (2008[Du Mont, W.-W., Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562-4577.]);

[Scheme 1]

Experimental

Crystal data
  • C14H12Br2

  • Mr = 340.06

  • Monoclinic, C 2/c

  • a = 33.084 (4) Å

  • b = 4.3354 (6) Å

  • c = 18.017 (2) Å

  • β = 103.702 (4)°

  • V = 2510.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.43 mm−1

  • T = 133 K

  • 0.25 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.316, Tmax = 0.566 (expected range = 0.294–0.526)

  • 18269 measured reflections

  • 3120 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.05

  • 3120 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
H⋯Br contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯Br1i 0.99 3.23 3.773 (3) 116
C12—H12⋯Br1ii 0.95 3.07 3.782 (3) 133
C13—H13⋯Br1ii 0.95 3.37 3.931 (3) 120
C13—H13⋯Br1iii 0.95 3.24 3.634 (3) 107
C14—H14⋯Br1iv 0.95 3.37 3.971 (3) 123
C14—H14⋯Br1v 0.95 3.43 4.326 (3) 157
C4—H4⋯Br2vi 0.95 3.37 4.260 (3) 156
C4—H4⋯Br2vii 0.95 3.26 3.845 (3) 122
C6—H6⋯Br2viii 0.95 3.20 4.124 (3) 166
C8—H8B⋯Br2ix 0.99 3.29 3.746 (3) 110
C8—H8A⋯Br2ix 0.99 3.43 3.746 (3) 101
C15—H15⋯Br2x 0.95 3.27 3.913 (3) 127
C16—H16⋯Br2viii 0.95 3.41 3.918 (3) 116
C16—H16⋯Br2x 0.95 3.24 3.898 (3) 128
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [x, -y+2, z+{\script{1\over 2}}]; (vi) -x, -y, -z; (vii) -x, -y+1, -z; (viii) [-x, y, -z+{\script{1\over 2}}]; (ix) x, y-1, z; (x) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We are interested in the structures of bromomethyl-substituted aromatic ring systems, compounds that are often used as synthestic intermediates; e.g. various bromomethylbenzenes (Jones & Kuś, 2007), 2,2"- and 2',5'- bis(bromomethyl)-p-terphenyl (Jones & Kuś, 2005; Jones et al., 2007). The packing patterns are often characterized by secondary interactions such as C—H···Br, Br···Br and C—H···π.

As a part of the synthesis of phenyl derivatives of [2.2]paracyclophane (Czuchajowski & Zemanek 1990), 2,5-di(bromomethyl)biphenyl (1) was obtained by bromination of 2,5-dimethylbiphenyl. Here we present its structure (Fig. 1).

Bond lengths and angles may be regarded as normal (e.g. the single bond between the rings is 1.486 (4) Å; ring angles at the substituted atoms C1, C2, C5 are all about 1° less than the ideal 120°). The interplanar angle is 53.52 (8)°. The bromomethyl groups adopt an anti-conformation whereby Br1 and Br2 lie out of their ring plane by 1.680 (4) and -1.736 (4) Å; associated torsion angles are C3—C2—C7—Br1 - 77.2 (3) and C4—C5—C8—Br2 - 87.9 (3)°. A similar conformation was observed in 2,6-di(bromomethyl)biphenyl (Obrey et al., 2002), whereas 2',5'-di(bromomethyl)-p-terphenyl adopts a syn-conformation (Jones et al. 2007).

The packing (Fig. 2) appears at first sight to be characterized by an almost total lack of secondary contacts. The shortest H···Br contact is H12···Br1 3.07 Å (operator 0.5 - x,-1/2 + y,0.5 - z) and there are no other H···Br < 3.19 Å; there are no Br···Br contacts < 4.2 Å and no H···π contacts < 2.95 Å (and these with very narrow angles). Both bromine atoms however are situated in a pocket surrounded by several H atoms; Br1 by six H at distances of 3.07–3.43, Br2 by eight H from 3.20–3.43 Å. This corresponds to the phenomenon of tertiary contacts as postulated by Du Mont et al. (2008).

Related literature top

For the structures of bromomethyl-substituted aromatic ring systems, see: Jones & Kuś (2005, 2007); Jones et al. (2007). For the synthesis, see: Czuchajowski & Zemanek (1990); For a related structure with a similar conformation, see: Obrey et al. (2002). For the phenomenon of tertiary contacts, see: Du Mont et al. (2008);

Experimental top

The title compound was obtained from 2,5-dimethylbiphenyl according to the method of Czuchajowski & Zemanek (1990). The analytical and spectroscopic data are consistent with the literature. Single crystals were grown by slow evaporation of a hexane solution. NMR data for (1): 1H NMR (CDCl3, 400 MHz): δ 7.52 (d, 1H), 7.50–7.39 (m, 6H), 7.29 (d, 1H), 4.50 (s, 2H), 4.44(s, 2H); 13C NMR (100 MHz): δ 142.54, 139.57, 138.07, 135.46, 131.53, 131.03, 128.94, 128.61, 128.44, 127.77, 32.75, 31.58.

Refinement top

H atoms were included at calculated positions and refined using a riding model, with fixed C—H bond lengths of 0.95 Å (CH, aromatic) or 0.99 Å (CH2) Å; Uiso(H) values were fixed at 1.2Ueq of the parent C atom. Largest difference peaks of ±1.0 e Å-3 near the bromine atoms may be attributed to residual absorption errors.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound in the crystal. Displacement ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed parallel to the short b axis.
2,5-Bis(bromomethyl)biphenyl top
Crystal data top
C14H12Br2F(000) = 1328
Mr = 340.06Dx = 1.799 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.084 (4) ÅCell parameters from 6730 reflections
b = 4.3354 (6) Åθ = 2.3–28.8°
c = 18.017 (2) ŵ = 6.43 mm1
β = 103.702 (4)°T = 133 K
V = 2510.7 (5) Å3Prism, colourless
Z = 80.25 × 0.10 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3120 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.192 pixels mm-1θmax = 28.3°, θmin = 1.3°
ϕ and ω scansh = 4444
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 55
Tmin = 0.316, Tmax = 0.566l = 2424
18269 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.9201P]
where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
C14H12Br2V = 2510.7 (5) Å3
Mr = 340.06Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.084 (4) ŵ = 6.43 mm1
b = 4.3354 (6) ÅT = 133 K
c = 18.017 (2) Å0.25 × 0.10 × 0.10 mm
β = 103.702 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3120 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2518 reflections with I > 2σ(I)
Tmin = 0.316, Tmax = 0.566Rint = 0.040
18269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 1.00 e Å3
3120 reflectionsΔρmin = 1.00 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.219743 (8)0.60712 (7)0.152339 (16)0.02600 (10)
Br20.025878 (8)0.25836 (8)0.108852 (19)0.03229 (11)
C10.11964 (8)0.5306 (6)0.22477 (14)0.0176 (5)
C20.13425 (8)0.6193 (6)0.16080 (15)0.0179 (5)
C30.11266 (8)0.5205 (7)0.08827 (15)0.0209 (5)
H30.12190.58560.04470.025*
C40.07831 (9)0.3310 (7)0.07839 (17)0.0244 (6)
H40.06470.26210.02870.029*
C50.06355 (8)0.2407 (6)0.14127 (17)0.0222 (6)
C60.08387 (8)0.3445 (7)0.21324 (16)0.0209 (6)
H60.07330.28830.25600.025*
C70.17006 (8)0.8325 (7)0.16619 (16)0.0211 (6)
H7A0.17650.93470.21680.025*
H7B0.16250.99420.12650.025*
C80.02710 (8)0.0280 (7)0.13151 (19)0.0304 (7)
H8A0.02940.09370.17880.037*
H8B0.02730.11760.08930.037*
C110.14006 (8)0.6257 (7)0.30405 (14)0.0187 (5)
C120.18247 (9)0.5758 (7)0.33539 (16)0.0247 (6)
H120.19890.47830.30560.030*
C130.20058 (9)0.6669 (8)0.40922 (17)0.0300 (7)
H130.22930.62880.43000.036*
C140.17707 (10)0.8145 (8)0.45354 (17)0.0306 (7)
H140.18980.88220.50380.037*
C150.13489 (9)0.8614 (8)0.42342 (16)0.0279 (7)
H150.11860.96150.45320.033*
C160.11642 (9)0.7626 (7)0.34998 (16)0.0225 (6)
H160.08730.78830.33060.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01373 (14)0.03068 (18)0.03439 (16)0.00368 (11)0.00730 (10)0.00446 (13)
Br20.01203 (15)0.0309 (2)0.0514 (2)0.00186 (11)0.00244 (12)0.00305 (14)
C10.0114 (11)0.0171 (13)0.0231 (12)0.0036 (10)0.0018 (9)0.0018 (11)
C20.0130 (11)0.0162 (13)0.0236 (12)0.0016 (10)0.0027 (9)0.0000 (11)
C30.0177 (12)0.0208 (14)0.0234 (12)0.0028 (11)0.0036 (10)0.0026 (11)
C40.0165 (13)0.0260 (15)0.0273 (14)0.0032 (11)0.0013 (10)0.0023 (12)
C50.0120 (12)0.0158 (14)0.0371 (15)0.0029 (10)0.0025 (11)0.0001 (12)
C60.0135 (12)0.0208 (14)0.0278 (13)0.0025 (10)0.0033 (10)0.0051 (11)
C70.0174 (13)0.0201 (14)0.0264 (13)0.0016 (11)0.0064 (10)0.0013 (11)
C80.0137 (13)0.0213 (15)0.0528 (19)0.0011 (12)0.0009 (12)0.0013 (14)
C110.0139 (12)0.0221 (14)0.0194 (12)0.0007 (10)0.0027 (9)0.0045 (11)
C120.0162 (13)0.0326 (17)0.0252 (13)0.0037 (12)0.0049 (10)0.0003 (12)
C130.0156 (13)0.045 (2)0.0266 (14)0.0033 (13)0.0003 (11)0.0033 (14)
C140.0276 (16)0.0415 (19)0.0209 (13)0.0006 (14)0.0018 (11)0.0002 (13)
C150.0260 (15)0.0366 (18)0.0233 (13)0.0043 (13)0.0104 (11)0.0026 (13)
C160.0174 (13)0.0252 (16)0.0254 (13)0.0055 (11)0.0059 (10)0.0057 (12)
Geometric parameters (Å, º) top
Br1—C71.978 (3)C14—C151.387 (4)
Br2—C81.974 (3)C15—C161.387 (4)
C1—C21.405 (4)C3—H30.9500
C1—C61.407 (4)C4—H40.9500
C1—C111.486 (4)C6—H60.9500
C2—C31.400 (4)C7—H7A0.9900
C2—C71.487 (4)C7—H7B0.9900
C3—C41.379 (4)C8—H8A0.9900
C4—C51.392 (4)C8—H8B0.9900
C5—C61.387 (4)C12—H120.9500
C5—C81.495 (4)C13—H130.9500
C11—C161.398 (4)C14—H140.9500
C11—C121.400 (4)C15—H150.9500
C12—C131.381 (4)C16—H160.9500
C13—C141.395 (4)
C2—C1—C6118.5 (2)C3—C4—H4120.0
C2—C1—C11123.1 (2)C5—C4—H4120.0
C6—C1—C11118.4 (2)C5—C6—H6119.0
C3—C2—C1118.9 (2)C1—C6—H6119.0
C3—C2—C7118.3 (2)C2—C7—H7A109.4
C1—C2—C7122.7 (2)Br1—C7—H7A109.4
C4—C3—C2121.7 (3)C2—C7—H7B109.4
C3—C4—C5120.0 (3)Br1—C7—H7B109.4
C6—C5—C4119.0 (3)H7A—C7—H7B108.0
C6—C5—C8120.6 (3)C5—C8—H8A109.4
C4—C5—C8120.4 (3)Br2—C8—H8A109.4
C5—C6—C1121.9 (3)C5—C8—H8B109.4
C2—C7—Br1111.0 (2)Br2—C8—H8B109.4
C5—C8—Br2111.4 (2)H8A—C8—H8B108.0
C16—C11—C12118.3 (3)C13—C12—H12119.7
C16—C11—C1119.7 (2)C11—C12—H12119.7
C12—C11—C1121.9 (2)C12—C13—H13119.7
C13—C12—C11120.6 (3)C14—C13—H13119.7
C12—C13—C14120.6 (3)C15—C14—H14120.4
C15—C14—C13119.3 (3)C13—C14—H14120.4
C14—C15—C16120.2 (3)C14—C15—H15119.9
C15—C16—C11120.9 (3)C16—C15—H15119.9
C4—C3—H3119.1C15—C16—H16119.5
C2—C3—H3119.1C11—C16—H16119.5
C6—C1—C2—C30.2 (4)C6—C5—C8—Br293.8 (3)
C11—C1—C2—C3179.4 (3)C4—C5—C8—Br287.9 (3)
C6—C1—C2—C7175.8 (3)C2—C1—C11—C16128.0 (3)
C11—C1—C2—C73.8 (4)C6—C1—C11—C1651.6 (4)
C1—C2—C3—C42.1 (4)C2—C1—C11—C1253.6 (4)
C7—C2—C3—C4177.8 (3)C6—C1—C11—C12126.8 (3)
C2—C3—C4—C51.9 (4)C16—C11—C12—C131.6 (4)
C3—C4—C5—C60.1 (4)C1—C11—C12—C13179.9 (3)
C3—C4—C5—C8178.2 (3)C11—C12—C13—C141.0 (5)
C4—C5—C6—C11.9 (4)C12—C13—C14—C151.8 (5)
C8—C5—C6—C1176.3 (3)C13—C14—C15—C160.1 (5)
C2—C1—C6—C51.8 (4)C14—C15—C16—C112.5 (5)
C11—C1—C6—C5178.6 (3)C12—C11—C16—C153.3 (4)
C3—C2—C7—Br177.2 (3)C1—C11—C16—C15178.2 (3)
C1—C2—C7—Br1107.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Br1i0.993.233.773 (3)116
C12—H12···Br1ii0.953.073.782 (3)133
C13—H13···Br1ii0.953.373.931 (3)120
C13—H13···Br1iii0.953.243.634 (3)107
C14—H14···Br1iv0.953.373.971 (3)123
C14—H14···Br1v0.953.434.326 (3)157
C4—H4···Br2vi0.953.374.260 (3)156
C4—H4···Br2vii0.953.263.845 (3)122
C6—H6···Br2viii0.953.204.124 (3)166
C8—H8B···Br2ix0.993.293.746 (3)110
C8—H8A···Br2ix0.993.433.746 (3)101
C15—H15···Br2x0.953.273.913 (3)127
C16—H16···Br2viii0.953.413.918 (3)116
C16—H16···Br2x0.953.243.898 (3)128
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1/2; (v) x, y+2, z+1/2; (vi) x, y, z; (vii) x, y+1, z; (viii) x, y, z+1/2; (ix) x, y1, z; (x) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12Br2
Mr340.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)133
a, b, c (Å)33.084 (4), 4.3354 (6), 18.017 (2)
β (°) 103.702 (4)
V3)2510.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)6.43
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.316, 0.566
No. of measured, independent and
observed [I > 2σ(I)] reflections
18269, 3120, 2518
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.05
No. of reflections3120
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.00

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Br1i0.993.233.773 (3)116.1
C12—H12···Br1ii0.953.073.782 (3)132.8
C13—H13···Br1ii0.953.373.931 (3)120.1
C13—H13···Br1iii0.953.243.634 (3)106.7
C14—H14···Br1iv0.953.373.971 (3)122.8
C14—H14···Br1v0.953.434.326 (3)157.3
C4—H4···Br2vi0.953.374.260 (3)156.3
C4—H4···Br2vii0.953.263.845 (3)122.0
C6—H6···Br2viii0.953.204.124 (3)165.8
C8—H8B···Br2ix0.993.293.746 (3)109.9
C8—H8A···Br2ix0.993.433.746 (3)101.2
C15—H15···Br2x0.953.273.913 (3)126.8
C16—H16···Br2viii0.953.413.918 (3)115.6
C16—H16···Br2x0.953.243.898 (3)127.7
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1/2; (v) x, y+2, z+1/2; (vi) x, y, z; (vii) x, y+1, z; (viii) x, y, z+1/2; (ix) x, y1, z; (x) x, y+1, z+1/2.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzuchajowski, L. & Zemanek, A. (1990). Pol. J. Chem. 64, 499–504.  CAS Google Scholar
First citationDu Mont, W.-W., Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562–4577.  Web of Science CSD CrossRef Google Scholar
First citationJones, P. G. & Kuś, P. (2005). Acta Cryst. E61, o2947–o2948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G. & Kuś, P. (2007). Z. Naturforsch. Teil B, 62, 725–731.  CAS Google Scholar
First citationJones, P. G., Zemanek, A. & Kuś, P. (2007). Acta Cryst. C63, o73–o76.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationObrey, S. J., Bott, S. G. & Barron, A. R. (2002). J. Chem. Crystallogr. 32, 205–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds