organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­thio­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: shameed@qau.edu.pk

(Received 14 May 2009; accepted 14 May 2009; online 20 May 2009)

The title compound, C7H6BrNS, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the aromatic ring and the thio­amide fragment are 23.6 (4) and 20.5 (3)° in the two mol­ecules. In the crystal, there are inter­molecular N—H⋯S hydrogen-bonding inter­actions between the amine group and the S atoms.

Related literature

For the uses of thio­amides, see: Akhtar et al. (2006[Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). X-ray Struct. Anal. Online, 22, x307-x308.], 2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.], 2008[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135-149.]); Jagodzinski et al. (2003[Jagodzinski, T. S. (2003). Chem. Rev. 103, 197-227.]). For the biological activity of thio­amides, see: Wei et al. (2006[Wei, Q.-L., Zhang, S.-S., Gao, J., Li, W.-H., Xu, L.-Z. & Yu, Z.-G. (2006). Bioorg. Med. Chem. 14, 7146-7153.]); Klimesova et al. (1999[Klimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Kra'lova, K. (1999). Eur. J. Med. Chem. 34, 433-440.]). For the synthesis of thio­amides, see: Kaboudin et al. (2006[Kaboudin, B. & Elhamifar, D. (2006). Synthesis Stuttgart, pp. 224-226.]); Cava et al. (1985[Cava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061-5087.]). For related crystal structures, see: Khan et al. (2009[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009). Acta Cryst. E65, o1128.]); Jian et al. (2006[Jian, F. F., Zhao, P., Zhang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63-67.]); Manaka & Sato (2005[Manaka, A. & Sato, M. (2005). Synth. Commun. 35, 761-764.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6BrNS

  • Mr = 216.10

  • Monoclinic, P 21 /c

  • a = 19.6325 (11) Å

  • b = 10.6101 (6) Å

  • c = 7.8859 (5) Å

  • β = 100.078 (1)°

  • V = 1617.31 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.26 mm−1

  • T = 296 K

  • 0.21 × 0.17 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.384, Tmax = 0.620

  • 12968 measured reflections

  • 3911 independent reflections

  • 2706 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.03

  • 3911 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S2i 0.86 2.73 3.583 (2) 172
N2—H2B⋯S1ii 0.86 2.65 3.500 (2) 173
N1—H1A⋯S1iii 0.86 2.78 3.605 (3) 160
N1—H1B⋯S2ii 0.86 2.71 3.523 (2) 158
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thioamides are biologically active compounds, possessing a wide spectrum of activities (Klimesova et al., 1999; Wei et al., 2006). They have enormous practical and synthetic applicability and their importance and impact as synthetic intermediates is continuously growing (Jagodzinski et al., 2003). Thioamides are generally synthesized using Lawesson's reagent (Cava et al., 1985) or phosphorus penta sulfide (Kaboudin et al., 2006). In this article, we wish to report the crystal structure of 4-bromobenzothioamide, which was synthesized by treating 4-bromobenzonitrile with 70% sodium hydrogen sulfide hydrate and magnesium chloride hexahydrate (Manaka & Sato, 2005) in continuation of our previous work on the synthesis and biological screenings of five membered heterocycles (Akhtar et al., 2006, 2007, 2008).

The hydrogen bonding interactions between the nitrogen and sulfur atoms (3.500 (2)Å to 3.605 (3) Å) are in the range of those seen in p-trifluoromethylbenzothioamide where the corresponding interactions are between 3.3735Å and 3.5133Å (Jian et al., 2006) and in the analogus chloride compound where the N···S distances are 3.3769 (15)Å and 3.4527 (15)Å (Khan et al., 2009).

Related literature top

For the uses of thioamides, see: Akhtar et al. (2006, 2007, 2008); Jagodzinski et al. (2003). For the biological activity of thioamides, see: Wei et al. (2006); Klimesova et al. (1999). For the synthesis of thioamides, see: Kaboudin et al. (2006); Cava et al. (1985). For related crystal structures, see: Khan et al. (2009); Jian et al. (2006); Manaka & Sato (2005).

Experimental top

The slurry of 70% sodium hydrogen sulfide hydrate (21.98 mmol) and magnesium chloride hexahydrate (10.99 mmol) was prepared in DMF (40 mL). 4-Bromobenzonitrile (11.0 mmol) was added to the slurry and the mixture stirred at room temperature for 2 h. The resulting mixture was poured into water (100 mL) and the precipitated solid collected by filtration. The product obtained was resuspended in 1 N HCl (50 ml), stirred for another 30 min, filtered and washed with excess water. The recrystallization of the product from chloroform afforded the crystals of 4-bromobenzothioamide suitable for X-ray analysis.

Refinement top

The hydrogen atoms were placed in geometrically idealized positions of 0.93Å (aromatic C—H) and 0.86Å (amide N—H) and constrained to ride on the parent atom with Uiso(H) = 1.2 UEq(c) for aromatic and amide protons.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 4-bromobenzothioamide showing displacement ellipsoids at the 50% probability level (for non-H atoms).
[Figure 2] Fig. 2. Packing diagram of 4-bromobenzothioamide. Displacement ellipsoids are shown at the 50% probability level (for non-H atoms).
4-Bromothiobenzamide top
Crystal data top
C7H6BrNSF(000) = 848
Mr = 216.10Dx = 1.775 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3900 reflections
a = 19.6325 (11) Åθ = 2.2–26.9°
b = 10.6101 (6) ŵ = 5.26 mm1
c = 7.8859 (5) ÅT = 296 K
β = 100.078 (1)°Block, yellow
V = 1617.31 (16) Å30.21 × 0.17 × 0.09 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3911 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2525
Tmin = 0.384, Tmax = 0.620k = 1314
12968 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.7786P]
where P = (Fo2 + 2Fc2)/3
3911 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C7H6BrNSV = 1617.31 (16) Å3
Mr = 216.10Z = 8
Monoclinic, P21/cMo Kα radiation
a = 19.6325 (11) ŵ = 5.26 mm1
b = 10.6101 (6) ÅT = 296 K
c = 7.8859 (5) Å0.21 × 0.17 × 0.09 mm
β = 100.078 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3911 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2706 reflections with I > 2σ(I)
Tmin = 0.384, Tmax = 0.620Rint = 0.025
12968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.82 e Å3
3911 reflectionsΔρmin = 0.78 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.315314 (16)0.36346 (4)0.36641 (5)0.07035 (13)
Br10.538072 (18)0.69050 (5)1.27120 (5)0.08477 (16)
S20.04123 (4)0.26135 (7)0.39188 (10)0.05003 (18)
S10.21328 (4)0.52885 (7)0.75427 (10)0.05230 (19)
N20.03383 (11)0.4881 (2)0.2688 (3)0.0473 (6)
H2A0.01190.55150.23670.057*
H2B0.07800.49160.26230.057*
C10.23831 (13)0.6495 (2)0.8875 (3)0.0412 (6)
C90.07643 (12)0.3842 (2)0.3369 (3)0.0342 (5)
C120.21855 (13)0.3743 (3)0.3549 (3)0.0429 (6)
C100.10919 (14)0.4633 (2)0.2364 (4)0.0459 (6)
H10A0.08310.52000.16180.055*
C140.11668 (14)0.3004 (3)0.4448 (3)0.0474 (7)
H14A0.09560.24660.51310.057*
C50.44606 (15)0.6804 (3)1.1491 (4)0.0558 (8)
C80.00020 (13)0.3859 (2)0.3280 (3)0.0370 (5)
C130.18748 (14)0.2945 (3)0.4535 (4)0.0515 (7)
H13A0.21370.23660.52600.062*
C110.18020 (15)0.4589 (3)0.2457 (4)0.0498 (7)
H11A0.20180.51270.17850.060*
N10.19425 (12)0.7375 (2)0.9174 (3)0.0554 (6)
H1A0.20820.79850.98670.067*
H1B0.15170.73380.86750.067*
C20.31088 (13)0.6623 (2)0.9781 (3)0.0408 (6)
C60.40650 (16)0.7873 (3)1.1197 (4)0.0622 (8)
H6A0.42500.86541.15630.075*
C30.35274 (15)0.5562 (3)1.0060 (4)0.0549 (7)
H3A0.33510.47830.96590.066*
C70.33903 (15)0.7780 (3)1.0352 (4)0.0540 (7)
H7A0.31190.85021.01620.065*
C40.42000 (16)0.5644 (3)1.0919 (4)0.0639 (9)
H4A0.44750.49261.11100.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.03962 (17)0.0895 (3)0.0834 (3)0.00005 (15)0.01476 (15)0.00159 (19)
Br10.04511 (19)0.1196 (4)0.0842 (3)0.00878 (19)0.00386 (16)0.0108 (2)
S20.0434 (4)0.0390 (4)0.0685 (5)0.0063 (3)0.0120 (3)0.0056 (3)
S10.0465 (4)0.0459 (4)0.0626 (5)0.0022 (3)0.0043 (3)0.0081 (3)
N20.0398 (12)0.0358 (12)0.0667 (15)0.0016 (9)0.0101 (11)0.0030 (11)
C10.0427 (14)0.0402 (14)0.0415 (14)0.0002 (11)0.0096 (11)0.0055 (11)
C90.0400 (13)0.0271 (12)0.0358 (13)0.0022 (10)0.0076 (10)0.0035 (10)
C120.0405 (14)0.0435 (15)0.0448 (15)0.0022 (12)0.0078 (11)0.0071 (12)
C100.0485 (15)0.0347 (14)0.0566 (17)0.0078 (12)0.0150 (12)0.0086 (12)
C140.0444 (15)0.0515 (17)0.0459 (15)0.0021 (12)0.0067 (12)0.0152 (13)
C50.0392 (15)0.078 (2)0.0497 (17)0.0057 (15)0.0057 (12)0.0030 (15)
C80.0428 (13)0.0305 (13)0.0375 (13)0.0018 (10)0.0065 (10)0.0057 (10)
C130.0420 (15)0.0607 (18)0.0499 (16)0.0040 (13)0.0023 (12)0.0138 (14)
C110.0552 (17)0.0372 (15)0.0628 (18)0.0003 (13)0.0261 (14)0.0071 (13)
N10.0442 (13)0.0528 (15)0.0659 (16)0.0090 (11)0.0004 (11)0.0115 (12)
C20.0395 (13)0.0418 (15)0.0420 (14)0.0003 (11)0.0099 (11)0.0036 (11)
C60.0509 (18)0.063 (2)0.072 (2)0.0100 (15)0.0088 (15)0.0202 (17)
C30.0483 (16)0.0439 (16)0.069 (2)0.0015 (13)0.0022 (14)0.0035 (14)
C70.0518 (17)0.0471 (17)0.0633 (19)0.0007 (13)0.0108 (14)0.0083 (14)
C40.0477 (17)0.058 (2)0.082 (2)0.0054 (15)0.0008 (15)0.0080 (17)
Geometric parameters (Å, º) top
Br2—C121.890 (3)C14—C131.381 (4)
Br1—C51.896 (3)C14—H14A0.9300
S2—C81.675 (3)C5—C61.371 (5)
S1—C11.674 (3)C5—C41.379 (5)
N2—C81.316 (3)C13—H13A0.9300
N2—H2A0.8600C11—H11A0.9300
N2—H2B0.8600N1—H1A0.8600
C1—N11.322 (3)N1—H1B0.8600
C1—C21.484 (4)C2—C31.388 (4)
C9—C141.380 (3)C2—C71.389 (4)
C9—C101.388 (3)C6—C71.378 (4)
C9—C81.486 (3)C6—H6A0.9300
C12—C131.364 (4)C3—C41.377 (4)
C12—C111.373 (4)C3—H3A0.9300
C10—C111.384 (4)C7—H7A0.9300
C10—H10A0.9300C4—H4A0.9300
C8—N2—H2A120.0C12—C13—C14119.3 (3)
C8—N2—H2B120.0C12—C13—H13A120.3
H2A—N2—H2B120.0C14—C13—H13A120.3
N1—C1—C2116.9 (2)C12—C11—C10119.5 (3)
N1—C1—S1121.5 (2)C12—C11—H11A120.3
C2—C1—S1121.58 (19)C10—C11—H11A120.3
C14—C9—C10118.0 (2)C1—N1—H1A120.0
C14—C9—C8120.0 (2)C1—N1—H1B120.0
C10—C9—C8122.0 (2)H1A—N1—H1B120.0
C13—C12—C11120.8 (3)C3—C2—C7118.3 (3)
C13—C12—Br2118.7 (2)C3—C2—C1119.6 (2)
C11—C12—Br2120.4 (2)C7—C2—C1122.1 (2)
C11—C10—C9120.8 (2)C5—C6—C7119.3 (3)
C11—C10—H10A119.6C5—C6—H6A120.3
C9—C10—H10A119.6C7—C6—H6A120.3
C9—C14—C13121.5 (2)C4—C3—C2121.1 (3)
C9—C14—H14A119.2C4—C3—H3A119.4
C13—C14—H14A119.2C2—C3—H3A119.4
C6—C5—C4121.1 (3)C6—C7—C2121.0 (3)
C6—C5—Br1120.0 (2)C6—C7—H7A119.5
C4—C5—Br1118.9 (2)C2—C7—H7A119.5
N2—C8—C9118.1 (2)C3—C4—C5119.1 (3)
N2—C8—S2120.9 (2)C3—C4—H4A120.5
C9—C8—S2120.96 (18)C5—C4—H4A120.5
C3—C1—C2—S123.6 (3)C14—C8—C9—S220.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S2i0.862.733.583 (2)172
N2—H2B···S1ii0.862.653.500 (2)173
N1—H1A···S1iii0.862.783.605 (3)160
N1—H1B···S2ii0.862.713.523 (2)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H6BrNS
Mr216.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.6325 (11), 10.6101 (6), 7.8859 (5)
β (°) 100.078 (1)
V3)1617.31 (16)
Z8
Radiation typeMo Kα
µ (mm1)5.26
Crystal size (mm)0.21 × 0.17 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.384, 0.620
No. of measured, independent and
observed [I > 2σ(I)] reflections
12968, 3911, 2706
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.03
No. of reflections3911
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.78

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S2i0.862.733.583 (2)172.4
N2—H2B···S1ii0.862.653.500 (2)172.8
N1—H1A···S1iii0.862.783.605 (3)160.4
N1—H1B···S2ii0.862.713.523 (2)158.4
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The authours thank the HEC, Pakistan, for a Ph.D. fellowship awarded to MuHK under the indiginous Ph.D. Program. JDM thanks Saint Mary's University for funding.

References

First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). X-ray Struct. Anal. Online, 22, x307–x308.  CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061–5087.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJagodzinski, T. S. (2003). Chem. Rev. 103, 197–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJian, F. F., Zhao, P., Zhang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaboudin, B. & Elhamifar, D. (2006). Synthesis Stuttgart, pp. 224–226.  Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009). Acta Cryst. E65, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Kra'lova, K. (1999). Eur. J. Med. Chem. 34, 433–440.  CrossRef CAS Google Scholar
First citationManaka, A. & Sato, M. (2005). Synth. Commun. 35, 761–764.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Q.-L., Zhang, S.-S., Gao, J., Li, W.-H., Xu, L.-Z. & Yu, Z.-G. (2006). Bioorg. Med. Chem. 14, 7146–7153.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds